Exploring personality profiles with matrices

CHRISTOPHER SHAW
COLUMBIA COLLEGE CHICAGO

JOINT MATHEMATICS MEETINGS

SEATTLE, WA

JANUARY 8, 2016

Setting for the project

- One-semester linear algebra course
 - supporting:
 - Minor in Mathematics
 - B.S. Game Programming
 - B.S. Acoustics
- Applications include:
 - Interpolation
 - Kirchoff Laws
 - Leslie matrices
 - Stochastic matrices
 - Least squares approximations

Project Goals

- Use technology (not necessarily programming) in an essential way, more than just for row-reduction
- Incorporate the project early in the semester
- Motivate students to anticipate the outcome of the project
- Finish the bulk of the work in a single twohour class period

Project outline

- Use matrices to model the pairwise compatibility of students in the class, based on their responses to a screening survey.
- Use a test question to measure the success of the compatibility model.
- Solicit student feedback after the project.
- Do the calculations in Microsoft Excel.

Why would I let students use Excel for real math?

- Available in all of our computer labs with no maximum number of simultaneous users
- Free (or at least Google Sheets is)
- Easy to use (students are already familiar with basic use)
- Surprisingly robust, and common in the world of applied mathematics

Preparatory work

- Brief lesson on symmetric matrices (10 minutes)
- Practice matrix operations with an Excel workbook (20 minutes)

Project structure

- Using a Moodle-enabled database tool, students answer several Likert-type questions about cultural topics
 - e.g., "How often do you ride a bike?", "How closely do you follow sports?", "How often did you visit art museums in 2015?"
- Students also answer several open-ended questions
 - e.g., favorite movies and music
- Using compatibility matrix techniques, students found their best/worst matches from the Likert questions, and evaluated their matches by comparing their answers to the open-ended questions
- Students reported their results and wrote an evaluation of the lesson

Compatibility matrix

Arrange a list of responses to a yes/no survey in a matrix.

Compare the respondents to return a symmetric matrix X so that entry X_{ij} assigns a compatibility rating between respondent p_i and respondent p_i .

Method 1: Positive preferences

Assign N a value of 0, and Y a value of 1 to form the "positive-preference matrix" X_P .

	Q1	Q2	Q3	Q4	Q5	Q6
p_1	Γ 0	1	1	0	1	0 7
p 2	1	1	0	0	1	1
<i>p</i> ₃	0	0	0	1	1	0
p 4	1	1	0	0	1	0
p ₅	0	1	1	0	1	1
<i>p</i> ₆	1	1	0	0	1	1
p 7	0	1	0	1	0	1

Method 1: Positive preferences

Multiplying $X_P X_P^T$ yields a symmetric matrix in which each entry x_{ij} represents the number of "yes" values in common between person i and person j.

	p_1	p 2	p 3	p 4	p_5	p 6	p 7
p_1	[3	2	1	2	3	2	1]
p ₂	2	4	1	3	3	4	2
p ₃	1	1	2	1	1	1	1
p 4	2	3	1	3	2	3	1
p 5	3	3	1	2	4	3	2
p 6	2	4	1	3	3	4	2
p 7	1	2	1	1	2	2	3

Method 2: Positive-negative preferences

Assign N a value of -1, and Y a value of 1 to form the "positive-negative preference matrix" X_{PN} .

Method 2: Positive-negative preferences

Again, multiplying $X_{PN}X_{PN}^T$ yields a symmetric matrix; this time, x_{ij} represents, between persons i and j, the number of their agreements less the number of their disagreements.

	p_1	p_2	p 3	P 4	p 5	p 6	P 7
ρ_1	6	0	0	2	4	0	-2
p 2	0	6	-2	4	2	6	0
<i>p</i> ₃	0	-2	6	0	-2	-2	0
p 4	2	4	0	6	0	4	-2
p 5	4	2	-2	0	6	2	0
p 6	0	6	-2	4	2	6	0
p 7	-2	0	0	-2	0	0	6

Compatibility through dot product

Positive-preferences

Positive agreement in 3 out of 7 categories: expect some common ground

Positive-negative-preferences

Disagreement in 7 of 7 categories: no common ground at all

Results

Positive-negative preference matrix

Positive preference matrix

Student feedback

Prompt: "Share your thoughts about how this project went today."

- I liked it. Learning the power of excel is very useful I think, even
 if we only use it this once in this class.
- It was very interesting and I learned a bit more about my class.
- Very cool but I think a different set of questions regarding musical tastes and film tastes would yield more relevant correlations
- Interesting way to work with matrices
- I like this project actually, really helpful to learn about how to use the excel to build the matrix. Somehow I feel the last two question on the survey is not important for this project.
- It was interesting to see matrix operations having "real life" uses.

Thank you.

CHRISTOPHER SHAW
ASST. PROF. MATHEMATICS
COLUMBIA COLLEGE CHICAGO
CSHAW@COLUM.EDU
WWW.SCHRIS.COM

