1. Use logarithmic differentiation to find the derivative:

\[f(x) = \frac{e^{3x}(x+1)^6(x^3-2)^4}{\sqrt{2x-7}} \]

Recall that logarithmic differentiation relies on the following:

\[\frac{d}{dx} \left[\ln(f(x)) \right] = \frac{f'(x)}{f(x)} \]

so

\[f'(x) = f(x) \cdot \frac{d}{dx} \left[\ln(f(x)) \right] \]

which is easier to find.

So first we find \(\frac{d}{dx} \left[\ln(f(x)) \right] \):

\[\ln \left(\frac{e^{3x}(x+1)^6(x^3-2)^4}{\sqrt{2x-7}} \right) = \ln(e^{3x}) + 6 \ln(x+1) + 4 \ln(x^3-2) - \frac{1}{2} \ln(2x-7) \].

Thus:

\[f'(x) = f(x) \cdot \frac{d}{dx} \left[\ln(f(x)) \right] = \left(\frac{e^{3x}(x+1)^6(x^3-2)^4}{\sqrt{2x-7}} \right) \left(3 + \frac{6}{x+1} + \frac{4 \cdot 3x^2}{x^3-2} - \frac{1}{2} \cdot \frac{2}{2x-7} \right) \]

2. (a) Find all values for \(x \) which make the equation true: \(x \ln(x+1) = 2x \)

To solve, we need to set the summands equal to zero and factor:

\[x \ln(x+1) - 2x = 0 \]

\[x(\ln(x+1) - 2) = 0 \]

So, the solutions are \(x = 0 \) and \(\ln(x+1) - 2 = 0 \), which we solve as follows:

\[\ln(x+1) = 2 \]

\[e^{\ln(x+1)} = e^2 \]

\[x + 1 = e^2 \], so:

\[x = e^2 - 1 \]

(b) Write the following expression in the form \(2^{ax+b} \) for some \(a \) and \(b \):

\[\frac{16^x}{2 \cdot 4^{2x}} = \frac{(2^4)^x}{2 \cdot (2^2)^{2x}} = \frac{2^{4x}}{2 \cdot 2^{4x}} = \frac{1}{2} = 2^{-1} \]

3. Find \(g'(1) \), where \(g(x) = e^{3x^2-2x+1} \)

\[g'(x) = (6x-2) \cdot e^{3x^2-2x+1} \], so \(g'(1) = (6 - 2) \cdot e^{3-2+1} = 4e^2 \]
4. For the following function, determine the **x**- and **y**-value of each critical point, and then use the first or second derivative test to determine whether each point is a maximum, minimum, or neither:

\[f(x) = \frac{x}{\ln(x)} \]

\[f'(x) = \frac{1 \cdot \ln(x) - x \cdot \frac{1}{x}}{(\ln(x))^2} = \frac{\ln(x) - 1}{(\ln(x))^2} \]

Solving for zero, we get \(\ln(x) - 1 = 0 \)

\(\ln(x) = 1 \)
\(x = e \)

The first derivative test will have the interval on the left \(x < e \) and the interval on the right \(x > e \). Since the function is not defined for zero or for 1, we will check the value of the derivative for \(\sqrt{e} = e^{\frac{1}{2}} \) and \(e^2 \):

\[f'(e^{\frac{1}{2}}) = \frac{\frac{1}{2} - 1}{(\frac{1}{2})^2} < 0 \]
\[f'(e^2) = \frac{2 - 1}{(2)^2} > 0 \]

So by the first derivative test, there is a maximum at \(x = e \), and the **y**-value at this point is \(f(e) = \frac{e}{1} = e \). So the maximum occurs at the point \((e, e)\).

5. To make killer robots, one uses the radioactive isotope **Halloweenium-X**, which has a decay constant of \(\lambda = .002 \).

(a) What is the half-life of **Halloweenium-X**?

Recall that \(L = \frac{\ln(2)}{\lambda} \), so in this case the half-life is \(L = \frac{\ln(2)}{.002} \).

(b) What differential equation is satisfied by the decay of **Halloweenium-X**?

The differential equation for exponential decay is \(P'(t) = -\lambda P(t) \), so \(P'(t) = -.002P(t) \).

(c) Use the differential equation to answer the question: how much **Halloweenium-X** is in a sample which is decaying at the rate of 4 grams per year?

This problem is asking the question: what is \(P(t) \) when \(P'(t) = -4 \)? We answer by plugging the quantity into the equation from part b: \(-4 = - .002 \cdot P(t) \), so \(P(t) = \frac{-4}{-.002} = 2000 \) grams.

6. A colony of flesh-eating zombies feeds on the living population of Earth and grows at a rate proportional to its size. (As with all zombie colonies) it starts with just one person, and after one year there are 2,500 zombies.

(a) Find the growth constant \(k \) of the zombie colony.

The equation is \(P(t) = P_0e^{kt} \), and the problem tells us \(P_0 = 1 \) and \(P(1) = 2500 \). So we solve for \(k \) as follows:

\[2500 = 1 \cdot e^{k \cdot 1} \]
\[\ln(2500) = k \]

(b) Find an equation \(P(t) \) which describes the number of zombies in the colony at time \(t \).

This is straightforward enough. \(P(t) = e^{(\ln(2500)) \cdot t} \)
(c) Using this equation, how many years until the colony reaches 10,000 zombies?
Solve the equation for \(t \):
\[
P(t) = 10000 = 1 \cdot e^{(\ln(2500)) \cdot t}
\]
\[
\ln(10000) = (\ln(2500)) \cdot t
\]
\[
t = \frac{\ln(10000)}{\ln(2500)}
\]

7. An evil collector sells his collection of cursed talismans for \$4,000, deposits the earnings into his bank account, then abruptly disappears and is never heard from again. The account accrues interest compounded continuously for 100 years before someone discovers it, with a balance of \$120,000. What was the annual interest rate for this bank account?
We know that the principal \(P \) is 4000, and we’re given that \(A(100) = 120000 \). So, we solve for \(r \):
\[
A(t) = Pe^{rt}
\]
\[
A(100) = 120000 = 4000e^{r \cdot 100}
\]
\[
\frac{120000}{4000} = 30 = e^{r \cdot 100}
\]
\[
\ln(30) = 100r
\]
\[
r = \frac{\ln(30)}{100}
\]

8. The concentration of a drug in the bloodstream of a patient, \(t \) hours after injection, is given by:
\[
f(t) = 5(e^{-2t} - e^{-2t}) \text{ units}
\]
At what rate is the drug concentration changing after 4 hours?
We just need to find \(f'(4) \), and this is a derivative we should be able to manage.
\[
f'(t) = 5 \cdot (-2e^{-2t} + 2e^{-2t})
\]
\[
f'(4) = 5 \cdot (-2e^{-8} + 2e^{-8})
\]