1. Consider the differential equation

\[y' = y^3 - 3y^2 \]

The graph of the phase curve \(g(y) = y^3 - 3y^2 \) is below; use this to help you sketch, on a separate set of axes, the constant solutions to the equation, as well as curves corresponding to the below initial conditions. Take care to show proper concavity behavior.

- \(y(1) = -1 \)
- \(y(1) = 2.9 \)
- \(y(1) = 4 \)

2. A wealthy grandfather opens a trust fund for his granddaughter. At the moment she begins to draw from the trust fund, its balance, in $US is \(K \), and it earns an annual return of 5.0%. She begins to make regular withdrawals to supplement her income amounting to $25,000 per year.

- Assuming the earnings and withdrawals are each enacted continuously, derive an initial value problem which models the balance of the account, \(t \) years after she begins drawing from it. (You do not have to solve the equation.)

- What is the equilibrium solution to this equation? Explain the significance of that number to the financial situation described in the problem. [Hint: compare solutions which take initial values above and below the equilibrium.]