Calculus II - Midterm Exam Review, Spring 2013 [Shaw]

1. Calculate:

(a) \(\int_{-\frac{\pi}{2}}^{0} 3 \sin^2(x) \cdot \cos(x) \, dx \)

(b) \(\int \cos^3(\theta) \sin^2(\theta) \, d\theta \)

(c) \(\int_{1}^{e} \frac{\log_3(t)}{t} \, dt \)

(d) \(\int \left(e^x - \frac{5}{x} \right) \sqrt{e^x - 5 \ln(x)} \, dx \)

(e) \(\int \frac{\sqrt{t}}{t} \, dt \)

(f) \(\int \tan^3 \theta \sec^2 \theta \, d\theta \)

(g) \(\int_{0}^{\pi/2} t^2 \cos(t) \, dt \)

(h) \(\int \cos^2(5x) \, dx \)

(i) \(\int e^{2x} \sin(2x) \, dx \)

(j) \(\int \sec^5(\theta) \, d\theta \)

2. Find the area in the \(xy \)-plane enclosed between the curves \(y = 3x - 1 \) and \(y = x^2 + 3x - 2 \).

3. Use any appropriate method (e.g., discs, washers, or shells) to find the volume of each of the solids described below:

(a) The solid generated by revolving the curve \(f(x) = 1 + e^x \), \(0 \leq x \leq \ln(2) \) about the \(x \)-axis.

(b) The solid generated by revolving the curve \(g(y) = \sqrt{y} \), \(0 \leq y \leq 32 \) about the \(y \)-axis.

4. Find the length of the curve along \(x = y^4 + \frac{1}{8y^2} \) from \(y = 1 \) to \(y = 2 \).

5. Find the area of the surface of revolution obtained by revolving about the \(x \)-axis the curve \(h(x) = \sqrt{2x - x^2} \), \(0 \leq x \leq 1 \).

6. A spring requires 0.2N of force to hold it steady when stretched to a distance of 0.01m from equilibrium. How much work is done by stretching the same spring from equilibrium to a distance of 0.1m?

7. Solve each of the separable differential equations; write your answers as functions in terms of \(x \).

(a) \(\frac{dy}{dx} = (-2x + 1)e^y \)

(b) \(\frac{1}{x^2 - x} \frac{dy}{dx} = \cos^2(y) \)

8. Determine whether \(f(t) = e^t + 5 \sin(t) \) is a solution to the differential equation \(y' + y'' = 2e^t \).

9. Solve the initial value problem \((y + 1) \frac{dy}{dt} = yt \), \(y(0) = 1 \).

10. The mass of a particular kryptonite variety satisfies the differential equation \(P' = -600P \), where \(t \) is measured in years. What is the half-life of this kryptonite?