1. A rock is thrown straight up into the air allowed to fall to the ground. After \(t \) seconds, the rock’s height above the ground, in feet, is given by the expression

\[s(t) = 7 + 10t - 16t^2 \]

(a) Write a general formula for the rock’s velocity at time \(t \).
(b) How many seconds does the rock spend traveling upward?

2. (a) Find the limit: \(\lim_{x \to 7} \frac{2x^2 - 14x}{-x + 7} \)
(b) Find the limit: \(\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h} \)

3. Find the equation for the tangent line to the function \(f(x) \) at the point \((\frac{\pi}{2}, 0) \).

\[f(x) = \cos^2(x) + 2x - \pi \]

4. Find the derivative of each function below.

(a) \(y = 3x^3 - 2x^2 + 1 \)
(b) \(y = 2 - \sqrt[3]{x} + \frac{x}{5} \)
(c) \(y = 3e^x + 1 \)

5. (a) Find \(\frac{d^2}{dx^2} [xe^{3x}] \)
(b) Find \(\frac{d}{dx} \left[\frac{6x - 7}{x^4 - x^2 + 1} \right] \)
(c) Find \(\frac{d}{dt} \left[(\tan(x)) \cdot (x + x^3) \right] \)

6. Find \(\frac{du}{dx} \), for the relation below.

\[(y^3 - y) x = e^y \]

7. Upon its initial start, a car travels forward so that at time \(t \), in seconds, the car has traveled \(s(t) \) feet, where

\[s(t) = 8.5t^2 \].

What is the acceleration of the car after 2.3 seconds?

8. Consider the function

\[g(x) = \begin{cases}
4x - 3 & \text{if } x \leq 3 \\
2 & \text{if } 3 < x \leq 4 \\
\sqrt{x} & \text{if } x > 4
\end{cases} \]

(a) Sketch the graph of \(g(x) \).
(b) Find \(\lim_{x \to 3^-} g(x) \).
(c) Find \(\lim_{x \to 4} g(x) \).

9. (a) Find \(f'(x) \), if \(f(x) = \sin^{-1}(3x) \).
(b) Find \(g'(1) \), when \(g(x) = 1 + \tan^{-1}(x) \).

10. (a) Find \(\frac{d}{dx} \left[\ln \left(x^3 + 4 \cos(x) \right) \right] \)
(b) If \(y = 3u + 7 \) and \(u = 6t^3 - e^t \), find \(\frac{dy}{dt} \).

11. Find the equation for all horizontal and vertical asymptotes of the function

\[h(x) = \frac{x^2 - 3x + 1}{x^3 - 1} \].