KEY - Quiz 2 [10 pts]. September 16, 2008
Math 111 Sec FC01
For questions 1 and 2: At a certain restaurant, the limited prix fixe menu allows the customer to choose from the options for each of the four courses. The menu is below:

Soup:	Asparagus puree Bisque of lobster
Salad:	Cæsar Date and nut
Entree:	Escargot on petit filet mignon Fried chicken
Dessert:	German chocolate cake

1. How many different possible meals could the customer select for his meal? [3 points]

Two choices for each of the first three courses and one choice for the last, so $2 \cdot 2 \cdot 2 \cdot 1=8$.
2. Draw a tree diagram to represent each of the possible meals. [3 points]

3. A standard New York state license plate is designated by three letters and four numerical digits. How many license plates are possible using this method? [2 points]

26 possible letters for each of the first three spots, 10 digits for each of the next four. By the generalized multiplication principle, there are $26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10=26^{3} \cdot 10^{4}$ possibilities.
4. Suppose that the letter O is not allowed to be used in the license plates. How many are possible? [2 points]

Same as before, only now we are just allowed 25 letters, so $25^{3} \cdot 10^{4}$.
Bonus. Suppose the letter O is allowed, but no license plate is permitted to have the same number repeated four times in a row. How many license plates are possible now? (Hint: First, figure out how many license plates there are with the same digit repeating four times.) [2 points]

The number of license plates with the same digit repeated four times is $26 \cdot 26 \cdot 26 \cdot 10$. $1 \cdot 1 \cdot 1 \cdot 1=26^{3} \cdot 10$. So the number of license plates without the same digit repeating is $26^{3} \cdot 10^{4}-26^{3} \cdot 10$.

