Weakly o-minimal structures and Skolem functions

Logic Seminar
The George Washington University

Christopher Shaw
University of Maryland, College Park

March 10, 2010
1. Background
 - Brief History
 - Model - definable - QE - DNF - o-minimal - Skolem function
 - Weakly o-minimal structures
 - Monotonicity

2. Valuational and nonvaluational cuts
 - Motivation
 - Definable subgroups
 - Good news
 - Pathologies

3. Skolem functions in valuational structures
 - T-immunity
 - Technique for elimination
 - Corollaries
1. **Background**
 - **Brief History**
 - Model - definable - QE - DNF - o-minimal - Skolem function
 - Weakly o-minimal structures
 - Monotonicity
 - **Valuational and nonvaluational cuts**
 - Motivation
 - Definable subgroups
 - Good news
 - Pathologies
 - **Skolem functions in valuational structures**
 - T-immunity
 - Technique for elimination
 - Corollaries
Background
Valuational and nonvaluational cuts
Skolem functions in valuational structures

Brief History
Model - definable - QE - DNF - o-minimal - Skolem function
Weakly o-minimal structures
Monotonicity

Catching up on the timeline

- 332 BC
- 1879
- 1900
- 1910
- 1920
- 1930
- 1931
- 1937
- 1949
- 1984
- 1996
- 2000
- 2008

Weakly o-minimal structures and Skolem functions
322 BC - *Organon*, Aristotle
322 BC - *Organon*, Aristotle

- “The categories”
- “On interpretation”
- “The prior analytics”
- “The posterior analytics”
- “The topics”
- “Sophistical refutations”
“Modern logic”

1879 - *Begriffsschrift*, Gottlob Frege
“Naive set theory”
1900 - Hilbert’s problems
Background
Valuational and nonvaluational cuts
Skolem functions in valuational structures

Brief History
Model - definable - QE - DNF - o-minimal - Skolem function
Weakly o-minimal structures
Monotonicity

1901 - Russell’s Paradox
1910 - *Principia Mathematica*, Bertrand Russell and Alfred Whitehead
Type theory
382 PROLEGOMENA TO CARDINAL ARITHMETIC [PART 11

*54:56. \(\vdash \alpha \sim \epsilon 0 \cup 1 \cup 2. \equiv (\exists x, y, z). x, y, z \in \alpha. x \neq y. x \neq z. y \neq z\)

Dem.

\(\vdash \alpha \sim \epsilon 0 \cup 1 \cup 2. \equiv (\exists x, y). x, y \in \alpha. x \neq y. \alpha \equiv t'x \cup t'y:\)

\text{[*51:2.*22:59]} \equiv (\exists x, y). t'x \cup t'y \subset \alpha. x \neq y. \alpha \equiv t'x \cup t'y:\)

\text{[*24:6]} \equiv (\exists x, y). t'x \cup t'y \subset \alpha. x \neq y. \exists ! \alpha - (t'x \cup t'y):\)

\text{[*51:232.Transp]} \equiv (\exists x, y). t'x \cup t'y \subset \alpha. x \neq y. \exists ! (\exists z). z \in \alpha. z \neq x. z \neq y:

\text{[*51:2.*22:59]} \equiv (\exists x, y, z). x, y, z \in \alpha. x \neq y. x \neq z. y \neq z. \vdash \alpha \vdash \text{Prop.}\)

In virtue of this proposition, a class which is neither null nor a unit class nor a couple contains at least three distinct members. Hence it will follow that any cardinal number other than 0 or 1 or 2 is equal to or greater than 3. The above proposition is used in *104:43, which is an existence-theorem of considerable importance in cardinal arithmetic.

03/10/10 - Christopher Shaw

Weakly o-minimal structures and Skolem functions
1920 - Thoralf Skolem refines the proof of Löwenheim’s theorem on model-existence.
Beginnings of computability theory

1930 - Completeness theorem
1931 - Incompleteness theorems
1930 - Tarski-Seidenberg theorem shows the real field, $\mathcal{R} = (\mathbb{R}, +, \cdot, <, 0, 1)$, eliminates quantifiers (and thus in later parlance is decidable).
Background
Valuational and nonvaluational cuts
Skolem functions in valuational structures

Brief History
Model - definable - QE - DNF - o-minimal - Skolem function
Weakly o-minimal structures
Monotonicity

Beginnings of computability theory

1937 - Turing machine
1949 - Julia Robinson shows that in the rational field \(\mathbb{Q} = (\mathbb{Q}, +, \cdot, <, 0, 1) \) one can define the positive integers.
1980s - o-minimal structures - definition and key classification results
1996 - Wilkie showed that $\mathcal{R}' = (\mathbb{R}, +, \cdot, \text{Exp}, <, 0, 1)$, the real exponential field, remains o-minimal.
2000 - Macpherson, Marker, Steinhorn: *weakly o-minimal* structures
Background
Valuational and nonvaluational cuts
Skolem functions in valuational structures

Brief History
Model - definable - QE - DNF - o-minimal - Skolem function
Weakly o-minimal structures
Monotonicity

03/10/10 - Christopher Shaw
Weakly o-minimal structures and Skolem functions
1. **Background**
 - Brief History
 - Model - definable - QE - DNF - o-minimal - Skolem function
 - Weakly o-minimal structures
 - Monotonicity

2. **Valuational and nonvaluational cuts**
 - Motivation
 - Definable subgroups
 - Good news
 - Pathologies

3. **Skolem functions in valuational structures**
 - T-immunity
 - Technique for elimination
 - Corollaries

03/10/10 - Christopher Shaw

Weakly o-minimal structures and Skolem functions
A *model* is a mathematical structure, with an ambient set ("universe") and a set of relation symbols, function symbols, and constant symbols ("language"), together with an intended meaning for them. The *theory* of a model \mathcal{M} is the collection of first order sentences satisfied on \mathcal{M}.
A *model* is a mathematical structure, with an ambient set ("universe") and a set of relation symbols, function symbols, and constant symbols ("language"), together with an intended meaning for them. The *theory* of a model \mathcal{M} is the collection of first order sentences satisfied on \mathcal{M}.

Our models will be familiar algebraic structures:
A *model* is a mathematical structure, with an ambient set ("universe") and a set of relation symbols, function symbols, and constant symbols ("language"), together with an intended meaning for them. The *theory* of a model \mathcal{M} is the collection of first order sentences satisfied on \mathcal{M}. Our models will be familiar algebraic structures:

- $(\omega, +, \cdot, <, 0, 1)$
A *model* is a mathematical structure, with an ambient set ("universe") and a set of relation symbols, function symbols, and constant symbols ("language"), together with an intended meaning for them. The *theory* of a model \(\mathcal{M} \) is the collection of first order sentences satisfied on \(\mathcal{M} \).

Our models will be familiar algebraic structures:

- \((\omega, +, \cdot, <, 0, 1)\)
- \((\mathbb{Z}, +, \cdot, <, 0, 1)\)
A *model* is a mathematical structure, with an ambient set ("universe") and a set of relation symbols, function symbols, and constant symbols ("language"), together with an intended meaning for them. The *theory* of a model \mathcal{M} is the collection of first order sentences satisfied on \mathcal{M}.

Our models will be familiar algebraic structures:

- $(\omega, +, \cdot, <, 0, 1)$
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$
- $(\mathbb{Q}, +, \cdot, <, 0, 1)$
A *model* is a mathematical structure, with an ambient set ("universe") and a set of relation symbols, function symbols, and constant symbols ("language"), together with an intended meaning for them. The *theory* of a model \mathcal{M} is the collection of first order sentences satisfied on \mathcal{M}. Our models will be familiar algebraic structures:

- $(\omega, +, \cdot, <, 0, 1)$
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$
- $(\mathbb{Q}, +, \cdot, <, 0, 1)$
- $(\mathbb{C}, +, \cdot, <, 0, 1)$
A *model* is a mathematical structure, with an ambient set (“universe”) and a set of relation symbols, function symbols, and constant symbols (“language”), together with an intended meaning for them. The *theory* of a model M is the collection of first order sentences satisfied on M.

Our models will be familiar algebraic structures:

- $(\omega, +, \cdot, <, 0, 1)$
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$
- $(\mathbb{Q}, +, \cdot, <, 0, 1)$
- $(\mathbb{C}, +, \cdot, <, 0, 1)$
- $(\mathbb{R}, +, \cdot, <, 0, 1)$
A set $X \subseteq M^n$ is *definable* if it is the solution set to some formula φ in the language L.
A set $X \subseteq M^n$ is *definable* if it is the solution set to some formula φ in the language L.

Examples:

- $(\omega, +, \cdot, <, 0, 1)$
A set $X \subseteq M^n$ is *definable* if it is the solution set to some formula φ in the language L.

Examples:

- $(\omega, +, \cdot, <, 0, 1)$- Arithmetical hierarchy
Definable sets

A set $X \subseteq M^n$ is *definable* if it is the solution set to some formula φ in the language L.

Examples:
- $(\omega, +, \cdot, <, 0, 1)$- Arithmetical hierarchy
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$
Definable sets

A set $X \subseteq M^n$ is *definable* if it is the solution set to some formula φ in the language L.

Examples:

- $(\omega, +, \cdot, <, 0, 1)$- Arithmetical hierarchy
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$- Integers (can define positive integers)
A set $X \subseteq M^n$ is **definable** if it is the solution set to some formula φ in the language L.

Examples:

- $(\omega, +, \cdot, <, 0, 1)$- Arithmetical hierarchy
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$- Integers (can define positive integers)
- $(\mathbb{Q}, +, \cdot, <, 0, 1)$
Definable sets

A set $X \subseteq M^n$ is **definable** if it is the solution set to some formula φ in the language L.

Examples:

- $(\omega, +, \cdot, <, 0, 1)$- Arithmetical hierarchy
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$- Integers (can define positive integers)
- $(\mathbb{Q}, +, \cdot, <, 0, 1)$- Can define positive integers (Robinson, 1949) with a Π_2 formula (Poonen, 2007)
Definable sets

A set $X \subseteq M^n$ is **definable** if it is the solution set to some formula φ in the language L.

Examples:

- $(\omega, +, \cdot, <, 0, 1)$- Arithmetical hierarchy
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$- Integers (can define positive integers)
- $(\mathbb{Q}, +, \cdot, <, 0, 1)$- Can define positive integers (Robinson, 1949) with a Π_2 formula (Poonen, 2007)
- $(\mathbb{C}, +, \cdot, <, 0, 1)$
Definable sets

A set $X \subseteq M^n$ is *definable* if it is the solution set to some formula φ in the language L.

Examples:

- $(\omega, +, \cdot, <, 0, 1)$- Arithmetical hierarchy
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$- Integers (can define positive integers)
- $(\mathbb{Q}, +, \cdot, <, 0, 1)$- Can define positive integers (Robinson, 1949) with a Π_2 formula (Poonen, 2007)
- $(\mathbb{C}, +, \cdot, <, 0, 1)$- Strongly minimal; sets definable \Leftrightarrow constructible
Definable sets

A set $X \subseteq M^n$ is *definable* if it is the solution set to some formula φ in the language L.

Examples:

- $(\omega, +, \cdot, <, 0, 1)$- Arithmetical hierarchy
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$- Integers (can define positive integers)
- $(\mathbb{Q}, +, \cdot, <, 0, 1)$- Can define positive integers (Robinson, 1949) with a Π_2 formula (Poonen, 2007)
- $(\mathbb{C}, +, \cdot, <, 0, 1)$- Strongly minimal; sets definable \iff constructible
- $(\mathbb{R}, +, \cdot, <, 0, 1)$
Definable sets

A set $X \subseteq M^n$ is *definable* if it is the solution set to some formula φ in the language L.

Examples:

- $(\omega, +, \cdot, <, 0, 1)$- Arithmetical hierarchy
- $(\mathbb{Z}, +, \cdot, <, 0, 1)$- Integers (can define positive integers)
- $(\mathbb{Q}, +, \cdot, <, 0, 1)$- Can define positive integers (Robinson, 1949) with a Π_2 formula (Poonen, 2007)
- $(\mathbb{C}, +, \cdot, <, 0, 1)$- Strongly minimal; sets definable \iff constructible
- $(\mathbb{R}, +, \cdot, <, 0, 1)$- ?
A theory has **elimination of quantifiers** (QE) iff on any model M and for any definable set $X \subseteq M$, there is a quantifier-free formula $\varphi(\bar{x})$ defining X.
A theory has *elimination of quantifiers* (QE) iff on any model \mathcal{M} and for any definable set $X \subseteq M$, there is a quantifier-free formula $\varphi(\bar{x})$ defining X.

Quantifier-free formulas can be written in *disjunctive normal form* (DNF):

$$
\bigvee_{i=1}^{m} \bigwedge_{j=1}^{n} \varphi_{ij}
$$

for φ_{ij} atomic or negated atomic.
The complex field is *strongly minimal*

The model $\mathcal{M} = (\mathbb{C}, +, \cdot, 0, 1)$ is QE. Using the DNF, one can show that the \mathcal{M}-definable subsets of \mathbb{C} are all finite or cofinite.
The complex field is *strongly minimal*

- The model $\mathcal{M} = (\mathbb{C}, +, \cdot, 0, 1)$ is QE. Using the DNF, one can show that the \mathcal{M}-definable subsets of \mathbb{C} are all finite or cofinite.

- Definable subsets of \mathbb{C}^n are precisely the *constructible sets* (in the sense of Weyl).
Definition: o-minimal

An ordered structure \((M, <, \ldots)\) is o-minimal if every definable subset (with parameters) of \(M^1\) is a finite union of points and open intervals.
Definition: o-minimal

An ordered structure \((\mathcal{M}, <, \ldots)\) is **o-minimal** if every definable subset (with parameters) of \(\mathcal{M}^1\) is a finite union of points and open intervals.

- We require the ordering \(<\) to be dense.
Definition: o-minimal

An ordered structure \((\mathcal{M}, <, \ldots)\) is \textit{o-minimal} if every definable subset (with parameters) of \(\mathcal{M}^1\) is a finite union of points and open intervals.

- We require the ordering \(<\) to be dense.
- Intervals must have endpoints in the structure \(\mathcal{M}\).
Definition: o-minimal

An ordered structure \((\mathcal{M}, <, \ldots)\) is o-minimal if every definable subset (with parameters) of \(\mathcal{M}^1\) is a finite union of points and open intervals.

- We require the ordering \(<\) to be dense.
- Intervals must have endpoints in the structure \(\mathcal{M}\).
- Example: \((\mathbb{R}, +, \cdot, 0, 1, <)\).
Definition: o-minimal

An ordered structure \((\mathcal{M}, <, \ldots)\) is **o-minimal** if every definable subset (with parameters) of \(\mathcal{M}^1\) is a finite union of points and open intervals.

- We require the ordering \(<\) to be dense.
- Intervals must have endpoints in the structure \(\mathcal{M}\).
- Example: \((\mathbb{R}, +, \cdot, 0, 1, <)\). Definable sets: 0-sets of polynomials [Tarski-Seidenberg].
Definition: o-minimal

An ordered structure $(\mathcal{M}, <, \ldots)$ is **o-minimal** if every definable subset (with parameters) of \mathcal{M}^1 is a finite union of points and open intervals.

- We require the ordering $<$ to be dense.
- Intervals must have endpoints in the structure \mathcal{M}.
- Example: $(\mathbb{R}, +, \cdot, 0, 1, <)$. Definable sets: 0-sets of polynomials [Tarski-Seidenberg].
- An o-minimal structure has an o-minimal theory [Knight-Pillay-Steinhorn, 1986].
Monotonicity & Cellular decomposition

Monotonicity Theorem: For every definable function $f : \mathcal{M} \to \mathcal{M}$, there is a partition of $\text{dom}(f)$ into finitely many intervals I_1, \ldots, I_n, such that for each $i \leq n$, $f \upharpoonright I_i$ is strictly monotone (strictly increasing, strictly decreasing, or constant).
Monotonicity & Cellular decomposition

- **Monotonicity Theorem**: For every definable function $f : \mathcal{M} \rightarrow \mathcal{M}$, there is a partition of $\text{dom}(f)$ into finitely many intervals I_1, \ldots, I_n, such that for each $i \leq n$, $f \mid I_i$ is strictly monotone (strictly increasing, strictly decreasing, or constant).

- **[Regular] cell decomposition**: Given a definable subset $Y \subseteq \mathcal{M}^n$, there is a finite partition \mathcal{C} of \mathcal{M}^n into [regular] cells such that Y is a union of cells in \mathcal{C}.
Monotonicity & Cellular decomposition

- **Monotonicity Theorem**: For every definable function $f : \mathcal{M} \to \mathcal{M}$, there is a partition of $\text{dom}(f)$ into finitely many intervals I_1, \ldots, I_n, such that for each $i \leq n$, $f \upharpoonright I_i$ is strictly monotone (strictly increasing, strictly decreasing, or constant).

- **[Regular] cell decomposition**: Given a definable subset $Y \subseteq \mathcal{M}^n$, there is a finite partition \mathcal{C} of \mathcal{M}^n into [regular] cells such that Y is a union of cells in \mathcal{C}.

- Cells in \mathcal{M} are points and open intervals.
Monotonicity & Cellular decomposition

- **Monotonicity Theorem**: For every definable function $f : \mathcal{M} \to \mathcal{M}$, there is a partition of $\text{dom}(f)$ into finitely many intervals I_1, \ldots, I_n, such that for each $i \leq n$, $f \upharpoonright I_i$ is strictly monotone (strictly increasing, strictly decreasing, or constant).

- **[Regular] cell decomposition**: Given a definable subset $Y \subseteq \mathcal{M}^n$, there is a finite partition \mathcal{C} of \mathcal{M}^n into [regular] cells such that Y is a union of cells in \mathcal{C}.

- Cells in \mathcal{M} are points and open intervals.

- For a cell X in \mathcal{M}^{n-1}, a cell in \mathcal{M}^n is the graph of a continuous $F : X \to \mathcal{M}$, or a difference function $(F, G)_X$.

03/10/10 - Christopher Shaw
Monotonicity & Cellular decomposition

Monotonicity Theorem: For every definable function $f : \mathcal{M} \to \mathcal{M}$, there is a partition of $\text{dom}(f)$ into finitely many intervals I_1, \ldots, I_n, such that for each $i \leq n$, $f \restriction I_i$ is strictly monotone (strictly increasing, strictly decreasing, or constant).

[Regular] cell decomposition: Given a definable subset $Y \subseteq \mathcal{M}^n$, there is a finite partition \mathcal{C} of \mathcal{M}^n into *regular* cells such that Y is a union of cells in \mathcal{C}.

Cells in \mathcal{M} are points and open intervals.

For a cell X in \mathcal{M}^{n-1}, a cell in \mathcal{M}^n is the graph of a continuous $F : X \to \mathcal{M}$, or a difference function $(F, G)_X$.

Functions defined on regular cells are continuous and monotone in each variable.
Cellular decomposition: picture

\[(F, G)_X\]
Cellular decomposition: picture

\((F, G)_X\)
Cellular decomposition: picture

\((F, G)_x\)
Cellular decomposition: picture

\((F, G)_X\)
A complete picture of the definable sets in an o-minimal structure.
Consequences of cellular decomposition

- A complete picture of the definable sets in an o-minimal structure.
- Uniform finiteness
Consequences of cellular decomposition

- A complete picture of the definable sets in an o-minimal structure.
- Uniform finiteness \iff o-minimal structures have o-minimal theories.

$(\mathcal{M}$ o-minimal and $\mathcal{M} \equiv \mathcal{N}$ implies \mathcal{N} o-minimal)
Skolem functions (1)

Any o-minimal theory expanding a group has *definable Skolem functions*:
Skolem functions (1)

Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \(M \) and an \(\mathcal{L} \)-formula \(\varphi(\bar{x}, y) \)
Skolem functions (1)

Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters).
Skolem functions (1)

Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters).
- There is a definable function $F : \mathcal{M}^n \to \mathcal{M}$.
Any o-minimal theory expanding a group has \textit{definable Skolem functions}:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters).

- There is a definable function $F : \mathcal{M}^n \to \mathcal{M}$ (“from the \bar{x}-values to the y-values”)
Skolem functions (1)

Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\vec{x}, y)$ (the \vec{x} act as parameters).

- There is a definable function $F : \mathcal{M}^n \to \mathcal{M}$ (“from the \vec{x}-values to the y-values”), such that if $\mathcal{M} \models \exists y(\varphi(\vec{b}, y))$, then $\mathcal{M} \models \varphi(\vec{b}, F(\vec{b}))$.

O-minimal structures also have uniform elimination of imaginaries: every definable equivalence relation of \mathcal{M}^n has a uniformly definable set of class representatives.

"Definable choice" [van den Dries, 1998]
Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters).
- There is a definable function $F : \mathcal{M}^n \rightarrow \mathcal{M}$ (“from the \bar{x}-values to the y-values”), such that if $\mathcal{M} \models \exists y(\varphi(\bar{b}, y))$, then $\mathcal{M} \models \varphi(\bar{b}, F(\bar{b}))$.
- O-minimal structures also have uniform elimination of imaginaries.
Skolem functions (1)

Any o-minimal theory expanding a group has \textit{definable Skolem functions}:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters).

- There is a definable function $F : \mathcal{M}^n \to \mathcal{M}$ (“from the \bar{x}-values to the y-values”), such that if $\mathcal{M} \models \exists y(\varphi(\bar{b}, y))$, then $\mathcal{M} \models \varphi(\bar{b}, F(\bar{b}))$.

- O-minimal structures also have uniform elimination of imaginaries: every definable equivalence relation of \mathcal{M}^n has a uniformly definable set of class representatives.
Skolem functions (1)

Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters).
- There is a definable function $F : \mathcal{M}^n \to \mathcal{M}$ (“from the \bar{x}-values to the y-values”), such that if $\mathcal{M} \models \exists y(\varphi(\bar{b}, y))$, then $\mathcal{M} \models \varphi(\bar{b}, F(\bar{b}))$.
- O-minimal structures also have uniform elimination of imaginaries: every definable equivalence relation of M^n has a uniformly definable set of class representatives.
- “Definable choice” [van den Dries, 1998]
Skolem functions (2)

Example

03/10/10 - Christopher Shaw
Background
Valuational and nonvaluational cuts
Skolem functions in valuational structures

Brief History
Model - definable - QE - DNF - o-minimal - Skolem function
Weakly o-minimal structures
Monotonicity

Skolem functions (2)

Example
Skolem functions (2)

Example
Skolem functions (2)

Example

\[M \]

\[M^n \]
Skolem functions (2)

Example
1 Background
- Brief History
- Model - definable - QE - DNF - o-minimal - Skolem function
- Weakly o-minimal structures
- Monotonicity

2 Valuational and nonvaluational cuts
- Motivation
- Definable subgroups
- Good news
- Pathologies

3 Skolem functions in valuational structures
- \(T \)-immunity
- Technique for elimination
- Corollaries
Definition: Weakly o-minimal

An ordered structure \((\mathcal{M}, <, \ldots) \) is weakly o-minimal if every definable subset of \(\mathcal{M}^1 \) is a finite union of convex sets. Initial observations:
Definition: Weakly o-minimal

An ordered structure \((\mathcal{M}, <, \ldots)\) is \textit{weakly o-minimal} if every definable subset of \(\mathcal{M}^1\) is a finite union of \textit{convex sets}.

Initial observations:

- Convex sets do not have to have endpoints in the structure \(\mathcal{M}\).
An ordered structure \((\mathcal{M}, <, \ldots)\) is \textit{weakly o-minimal} if every definable subset of \(\mathcal{M}^1\) is a finite union of \textit{convex sets}.

Initial observations:

- Convex sets do not have to have endpoints in the structure \(\mathcal{M}\).
- Any o-minimal structure is weakly o-minimal.
Definition: Weakly o-minimal

An ordered structure \((M, <, \ldots)\) is *weakly o-minimal* if every definable subset of \(M^1\) is a finite union of *convex sets*. Initial observations:

- Convex sets do not have to have endpoints in the structure \(M\).
- Any o-minimal structure is weakly o-minimal.
- Any weakly o-minimal structure which is Dedekind complete is also o-minimal.
Definition: Weakly o-minimal

An ordered structure \((M, <, \ldots)\) is weakly o-minimal if every definable subset of \(M^1\) is a finite union of convex sets.

Initial observations:

- Convex sets do not have to have endpoints in the structure \(M\).
- Any o-minimal structure is weakly o-minimal.
- Any weakly o-minimal structure which is Dedekind complete is also o-minimal.
- Thus, any weakly o-minimal structure with universe \(\mathbb{R}\) is o-minimal.
Adding a convex predicate

Since $\pi \not\in \mathbb{Q}$, the set $\{ x \in \mathbb{Q} : -\pi < x < \pi \}$ is convex in \mathbb{Q}, but not an interval.
Since $\pi \not\in \mathbb{Q}$, the set $\{ x \in \mathbb{Q} : -\pi < x < \pi \}$ is convex in \mathbb{Q}, but not an interval.
Adding a convex predicate

Since $\pi \notin \mathbb{Q}$, the set $\{ x \in \mathbb{Q} : -\pi < x < \pi \}$ is convex in \mathbb{Q}, but not an interval.

$$\mathcal{M}_1 = (\mathbb{Q}, <, +, P), \text{ where } P^{\mathcal{M}_1} = \{ x \in \mathbb{Q} : -\pi < x < \pi \}.$$
Since \(\pi \notin \mathbb{Q} \), the set \(\{ x \in \mathbb{Q} : -\pi < x < \pi \} \) is convex in \(\mathbb{Q} \), but not an interval.

\(M_1 = (\mathbb{Q}, <, +, P) \), where \(P^{M_1} = \{ x \in \mathbb{Q} : -\pi < x < \pi \} \).

\(M_2 = (\mathbb{R}^*, <, +, \cdot, U) \), where \(\mathbb{R}^* \) is a proper end extension of \(\mathbb{R} \), and \(U^{M_2} \) is the convex hull of \(\mathbb{R} \) in \(\mathbb{R}^* \).
Since $\pi \notin \mathbb{Q}$, the set $\{x \in \mathbb{Q} : -\pi < x < \pi\}$ is convex in \mathbb{Q}, but not an interval.

- $\mathcal{M}_1 = (\mathbb{Q}, <, +, P)$, where $P^{\mathcal{M}_1} = \{x \in \mathbb{Q} : -\pi < x < \pi\}$.
- $\mathcal{M}_2 = (\mathbb{R}^*, <, +, \cdot, U)$, where \mathbb{R}^* is a proper end extension of \mathbb{R}, and $U^{\mathcal{M}_2}$ is the convex hull of \mathbb{R} in \mathbb{R}^*.

The most intuitive examples of weakly o-minimal structures. (Take a nice ordered structure, add a convex set!)
Adding a convex predicate

Since \(\pi \not\in \mathbb{Q} \), the set \(\{ x \in \mathbb{Q} : -\pi < x < \pi \} \) is convex in \(\mathbb{Q} \), but not an interval.

- \(\mathcal{M}_1 = (\mathbb{Q}, <, +, P) \), where \(P^{\mathcal{M}_1} = \{ x \in \mathbb{Q} : -\pi < x < \pi \} \).
- \(\mathcal{M}_2 = (\mathbb{R}^*, <, +, \cdot, U) \), where \(\mathbb{R}^* \) is a proper end extension of \(\mathbb{R} \), and \(U^{\mathcal{M}_2} \) is the convex hull of \(\mathbb{R} \) in \(\mathbb{R}^* \).
- The most intuitive examples of weakly o-minimal structures. (Take a nice ordered structure, add a convex set!)
- \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) are the two main paradigmatic examples of weakly o-minimal structures.
1 Background
- Brief History
- Model - definable - QE - DNF - o-minimal - Skolem function
- Weakly o-minimal structures
- Monotonicity

2 Valuational and nonvaluational cuts
- Motivation
- Definable subgroups
- Good news
- Pathologies

3 Skolem functions in valuational structures
- T-immunity
- Technique for elimination
- Corollaries
Monotonicity Theorem [Arefiev, 1997] For \mathcal{M} weakly o-minimal, for every definable function $f : \mathcal{M} \to \mathcal{M}$, there is a partition of $\text{dom}(f)$ into finitely many convex sets U_1, \ldots, U_n, such that for each $i \leq n$, $f \restriction U_i$ is locally strictly monotone (strictly increasing, strictly decreasing, or constant).
Monotonicity Theorem [Arefiev, 1997] For \mathcal{M} weakly o-minimal, for every definable function $f : \mathcal{M} \rightarrow \mathcal{M}$, there is a partition of $\text{dom}(f)$ into finitely many convex sets U_1, \ldots, U_n, such that for each $i \leq n$, $f \upharpoonright U_i$ is locally strictly monotone (strictly increasing, strictly decreasing, or constant).

\mathcal{M} has the Finitary Monotonicity Property (FMP) if $f \upharpoonright U_i$ with f and U_i as above is strictly monotone.
Weakly o-minimal structures

- **Monotonicity Theorem** [Arefiev, 1997] For \mathcal{M} weakly o-minimal, for every definable function $f : \mathcal{M} \rightarrow \mathcal{M}$, there is a partition of $\text{dom}(f)$ into finitely many *convex sets* U_1, \ldots, U_n, such that for each $i \leq n$, $f \upharpoonright U_i$ is *locally* strictly monotone (strictly increasing, strictly decreasing, or constant).

- \mathcal{M} has the *Finitary Monotonicity Property* (FMP) if $f \upharpoonright U_i$ with f and U_i as above is strictly monotone.

- FMP is not true of general weakly o-minimal structures.
Consider \(M = (\mathbb{Q} + (\mathbb{Q} \times \mathbb{Q}), <_{\text{lex}}, f) \) with the implied order.
Consider
\[\mathcal{M} = (\mathbb{Q} + (\mathbb{Q} \times \mathbb{Q}), \leq_{\text{lex}}, f) \]
with the implied order.
Interpret \(f \) as a function
\((\mathbb{Q} \times \mathbb{Q}) \rightarrow \mathbb{Q} \) from the “right”
part of \(\mathcal{M} \) to the “left” part.
Consider
\[\mathcal{M} = (\mathbb{Q} + (\mathbb{Q} \times \mathbb{Q}), \leq_{\text{lex}}, f) \]
with the implied order.
Interpret \(f \) as a function
\[(\mathbb{Q} \times \mathbb{Q}) \rightarrow \mathbb{Q} \]
from the “right” part of \(\mathcal{M} \) to the “left” part.

\[f(a, b) = a \]
Consider \(\mathcal{M} = (\mathbb{Q} + (\mathbb{Q} \times \mathbb{Q}), \leq_{\text{lex}}, f) \) with the implied order. Interpret \(f \) as a function \((\mathbb{Q} \times \mathbb{Q}) \rightarrow \mathbb{Q}\) from the “right” part of \(M \) to the “left” part.

\[f(a, b) = a \]
A structure without “reasonable” monotonicity

Why is there no contradiction to weak o-minimality?
A structure without “reasonable” monotonicity

Why is there no contradiction to weak o-minimality?

- No other definable functions (in particular no group).
A structure without “reasonable” monotonicity

Why is there no contradiction to weak o-minimality?

- No other definable functions (in particular no group).
- In a “reasonable” structure, we could define g as well:
A structure without “reasonable” monotonicity

Why is there no contradiction to weak o-minimality?

- No other definable functions (in particular no group).
- In a “reasonable” structure, we could define g as well:

\[\mathbb{Q} \times \mathbb{Q} \]

\[g \]

\[\mathbb{Q} \times \mathbb{Q} \]

\[\mathbb{Q} \times \mathbb{Q} \]
1 Background
- Brief History
- Model - definable - QE - DNF - o-minimal - Skolem function
- Weakly o-minimal structures
- Monotonicity

2 Valuational and nonvaluational cuts
- Motivation
- Definable subgroups
- Good news
- Pathologies

3 Skolem functions in valuational structures
- T-immunity
- Technique for elimination
- Corollaries
Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?
Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?

How much of the simplicity of structure of o-minimality can be preserved in the weakly o-minimal case?
Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?

How much of the simplicity of structure of o-minimality can be preserved in the weakly o-minimal case?

- Monotonicity?
Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?

How much of the simplicity of structure of o-minimality can be preserved in the weakly o-minimal case?

- Monotonicity?
- Cellular decomposition?
Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?

How much of the simplicity of structure of o-minimality can be preserved in the weakly o-minimal case?

- Monotonicity?
- Cellular decomposition?
- Tractable definable subsets?
Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?

How much of the simplicity of structure of o-minimality can be preserved in the weakly o-minimal case?

- Monotonicity?
- Cellular decomposition?
- Tractable definable subsets?

Given that there is no hope for the above in the general case, look only at weakly o-minimal structures expanding a group. What can we say?
1. **Background**
 - Brief History
 - Model - definable - QE - DNF - o-minimal - Skolem function
 - Weakly o-minimal structures
 - Monotonicity

2. **Valuational and nonvaluational cuts**
 - Motivation
 - Definable subgroups
 - Good news
 - Pathologies

3. **Skolem functions in valuational structures**
 - T-immunity
 - Technique for elimination
 - Corollaries
General facts

- An o-minimal group has no proper definable subgroup.
An o-minimal group has no proper definable subgroup. (This is used to prove that an o-minimal group must be divisible abelian - DOAG.)
General facts

- An o-minimal group has no proper definable subgroup. (This is used to prove that an o-minimal group must be divisible abelian - DOAG.)

- More generally, there are no definable convex equivalence relations with infinitely many infinite classes.
General facts

- An o-minimal group has no proper definable subgroup. (This is used to prove that an o-minimal group must be divisible abelian - DOAG.)
- More generally, there are no definable convex equivalence relations with infinitely many infinite classes.
- Not true in general in the weakly o-minimal case:
General facts

- An o-minimal group has no proper definable subgroup. (This is used to prove that an o-minimal group must be divisible abelian - DOAG.)
- More generally, there are no definable convex equivalence relations with infinitely many infinite classes.
- Not true in general in the weakly o-minimal case:
- Let \mathbb{R}^* be a nonarchimedean end extension of \mathbb{R}, and $\mathcal{M} = (\mathbb{R}^*, +, <, 0, U)$, where $U^\mathcal{M}$ is interpreted as the convex hull of \mathbb{R} in \mathbb{R}^*.

Weakly o-minimal structures and Skolem functions
General facts

- An o-minimal group has no proper definable subgroup. (This is used to prove that an o-minimal group must be divisible abelian - DOAG.)

- More generally, there are no definable convex equivalence relations with infinitely many infinite classes.

- Not true in general in the weakly o-minimal case:
 - Let \mathbb{R}^* be a nonarchimedean end extension of \mathbb{R}, and $\mathcal{M} = (\mathbb{R}^*, +, <, 0, U)$, where $U^\mathcal{M}$ is interpreted as the convex hull of \mathbb{R} in \mathbb{R}^*.
 - Weakly o-minimal, but $U(\mathcal{M})$ defines a proper subgroup.
An o-minimal group has no proper definable subgroup. (This is used to prove that an o-minimal group must be divisible abelian - DOAG.)

More generally, there are no definable convex equivalence relations with infinitely many infinite classes.

Not true in general in the weakly o-minimal case:

Let \mathbb{R}^* be a nonarchimedean end extension of \mathbb{R}, and $\mathcal{M} = (\mathbb{R}^*, +, <, 0, U)$, where $U^\mathcal{M}$ is interpreted as the convex hull of \mathbb{R} in \mathbb{R}^*.

Weakly o-minimal, but $U(\mathcal{M})$ defines a proper subgroup.

Any definable subgroup is convex.
General facts

- An o-minimal group has no proper definable subgroup. (This is used to prove that an o-minimal group must be divisible abelian - DOAG.)
- More generally, there are no definable convex equivalence relations with infinitely many infinite classes.
- Not true in general in the weakly o-minimal case:
- Let \mathbb{R}^* be a nonarchimedean end extension of \mathbb{R}, and $\mathcal{M} = (\mathbb{R}^*, +, <, 0, U)$, where $U^\mathcal{M}$ is interpreted as the convex hull of \mathbb{R} in \mathbb{R}^*.
- Weakly o-minimal, but $U(\mathcal{M})$ defines a proper subgroup.
- Any definable subgroup is convex \Rightarrow weakly o-minimal groups satisfy DOAG.
1 Background
 - Brief History
 - Model - definable - QE - DNF - o-minimal - Skolem function
 - Weakly o-minimal structures
 - Monotonicity

2 Valuational and nonvaluational cuts
 - Motivation
 - Definable subgroups
 - Good news
 - Pathologies

3 Skolem functions in valuational structures
 - T-immunity
 - Technique for elimination
 - Corollaries
Valuational: definition and examples

A cut $\langle C, D \rangle$ of \mathcal{M}
A cut $\langle C, D \rangle$ of \mathcal{M} is \textit{valuational} if there is $\varepsilon > 0$ such that $C + \varepsilon = C$.

\begin{center}
\begin{tikzpicture}
 \draw[->] (0,0) -- (5,0) node[right] {D};
 \draw[->] (0,0) -- (-5,0) node[left] {\mathcal{M}};
 \fill (2,0) circle (2pt) node[above] {C};
 \fill (-2,0) circle (2pt) node[above] {0};
 \fill (0,-0.5) circle (2pt) node[below] {ε};
\end{tikzpicture}
\end{center}
A cut $\langle C, D \rangle$ of \mathcal{M} is *valuational* if there is $\varepsilon > 0$ such that $C + \varepsilon = C$.

Diagram:

```
0  ε  C  g  D  M
```

A weakly o-minimal group \mathcal{M} is valuational if \mathcal{M} has a definable valuational cut; equivalently, \mathcal{M} has a definable proper subgroup.

By the subgroup characterization, the end-extension of \mathbb{R} is valuational. Using the other characterization, the rationals with convex predicate for π is nonvaluational.
A cut $\langle C, D \rangle$ of \mathcal{M} is *valuational* if there is $\varepsilon > 0$ such that $C + \varepsilon = C$.

![Diagram of a cut](image)

A weakly o-minimal group \mathcal{M} is valuational if \mathcal{M} has a definable valuational cut; equivalently, \mathcal{M} has a definable proper subgroup.

By the subgroup characterization, the end-extension of \mathbb{R} is valuational. Using the other characterization, the rationals with convex predicate for π is nonvaluational.
Valuational: definition and examples

A cut \(\langle C, D \rangle \) of \(\mathcal{M} \) is *valuational* if there is \(\varepsilon > 0 \) such that \(C + \varepsilon = C \).

A weakly o-minimal group \(\mathcal{M} \) is *valuational* if \(\mathcal{M} \) has a definable valuational cut.
Valuational: definition and examples

A cut \(\langle C, D \rangle \) of \(\mathcal{M} \) is *valuational* if there is \(\varepsilon > 0 \) such that \(C + \varepsilon = C \).

A weakly o-minimal group \(\mathcal{M} \) is *valuational* if \(\mathcal{M} \) has a definable valuational cut; equivalently, \(\mathcal{M} \) has a definable proper subgroup.
A cut $\langle C, D \rangle$ of \mathcal{M} is *valuational* if there is $\varepsilon > 0$ such that $C + \varepsilon = C$.

A weakly o-minimal group \mathcal{M} is *valuational* if \mathcal{M} has a definable valuational cut; equivalently, \mathcal{M} has a definable proper subgroup.

- By the subgroup characterization, the end-extension of \mathbb{R} is valuational.
A cut \(\langle C, D \rangle \) of \(\mathcal{M} \) is *valuational* if there is \(\varepsilon > 0 \) such that \(C + \varepsilon = C \).

A weakly o-minimal group \(\mathcal{M} \) is *valuational* if \(\mathcal{M} \) has a definable valuational cut; equivalently, \(\mathcal{M} \) has a definable proper subgroup.

- By the subgroup characterization, the end-extension of \(\mathbb{R} \) is valuational.
- Using the other characterization, the rationals with convex predicate for \(\pi \) is nonvaluational.
Non-valuational structures

[McPherson-Marker-Steinhorn, 2000]
Non-valuational structures

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:
Non-valuational structures

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:
- \mathcal{F} is real closed;
Non-valuational structures

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:

- \mathcal{F} is real closed;
- \mathcal{F} has a strong monotonicity;
Non-valuational structures

[McPherson-Marker-Steinhorn, 2000] For a weakly o-minimal nonvaluational field \mathcal{F}:

- \mathcal{F} is real closed;
- \mathcal{F} has a strong monotonicity;
- \mathcal{F} has a strong cellular decomposition and uniform finiteness;
Non-valuational structures

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:

- \mathcal{F} is real closed;
- \mathcal{F} has a strong monotonicity;
- \mathcal{F} has a strong cellular decomposition and uniform finiteness;
- \mathcal{F} has a weakly o-minimal theory.

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational group \mathcal{G}:

- \mathcal{G} has a strong monotonicity;
- \mathcal{G} has a strong cellular decomposition and uniform finiteness;
- \mathcal{G} has a weakly o-minimal theory.
Non-valuational structures

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:

- \mathcal{F} is real closed;
- \mathcal{F} has a strong monotonicity;
- \mathcal{F} has a strong cellular decomposition and uniform finiteness;
- \mathcal{F} has a weakly o-minimal theory.

[Wencel, preprint]
Non-valuational structures

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:
- \mathcal{F} is real closed;
- \mathcal{F} has a strong monotonicity;
- \mathcal{F} has a strong cellular decomposition and uniform finiteness;
- \mathcal{F} has a weakly o-minimal theory.

[Wencel, preprint]
For a weakly o-minimal nonvaluational group \mathcal{G}:
Non-valuational structures

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:
- \mathcal{F} is real closed;
- \mathcal{F} has a strong monotonicity;
- \mathcal{F} has a strong cellular decomposition and uniform finiteness;
- \mathcal{F} has a weakly o-minimal theory.

[Wencel, preprint]
For a weakly o-minimal nonvaluational group \mathcal{G}:
- \mathcal{G} has a strong monotonicity;
- \mathcal{G} has a strong cellular decomposition and uniform finiteness;
- \mathcal{G} has a weakly o-minimal theory.
In the meantime

Before discovering the work of Wencel, we found a partial result:

- If $Th(\mathcal{M})$ is weakly o-minimal and valuational, then \mathcal{M} has finitary monotonicity.
In the meantime

Before discovering the work of Wencel, we found a partial result:

- If $Th(\mathcal{M})$ is weakly o-minimal and valuational, then \mathcal{M} has finitary monotonicity.
- If $Th(\mathcal{M})$ has definable Skolem functions and elimination of imaginaries, then there is no convex definable equivalence relation with infinitely many infinite classes.
Before discovering the work of Wencel, we found a partial result:

- If $Th(\mathcal{M})$ is weakly o-minimal and valuational, then \mathcal{M} has finitary monotonicity.
- If $Th(\mathcal{M})$ has definable Skolem functions and elimination of imaginaries, then there is no convex definable equivalence relation with infinitely many infinite classes \Rightarrow \mathcal{M} has finitary monotonicity.
Before discovering the work of Wencel, we found a partial result:

- If $Th(\mathcal{M})$ is weakly o-minimal and valuational, then \mathcal{M} has finitary monotonicity.
- If $Th(\mathcal{M})$ has definable Skolem functions and elimination of imaginaries, then there is no convex definable equivalence relation with infinitely many infinite classes $\Rightarrow \mathcal{M}$ has finitary monotonicity.
- This also means $Th(\mathcal{M})$ does not have a proper definable subgroup.
1. **Background**
 - Brief History
 - Model - definable - QE - DNF - o-minimal - Skolem function
 - Weakly o-minimal structures
 - Monotonicity

2. **Valuational and nonvaluational cuts**
 - Motivation
 - Definable subgroups
 - Good news
 - Pathologies

3. **Skolem functions in valuational structures**
 - T-immunity
 - Technique for elimination
 - Corollaries
Valuational structures

There is no hope of a "nice" cellular decomposition. In \((\mathbb{R}^*, +, \times, U)\), define \(X \subseteq \mathbb{R}^*\) by the formula \(U(y - x)\).
There is no hope of a “nice” cellular decomposition. In $(\mathbb{R}^*, +, <, U)$, define $X \subseteq \mathbb{R}^*$ by the formula $U(y - x)$.
There is no hope of a “nice” cellular decomposition. In $(\mathbb{R}^*, +, <, U)$, define $X \subseteq \mathbb{R}^*$ by the formula $U(y - x)$.
There is no hope of a “nice” cellular decomposition. In $(\mathbb{R}^*, +, <, U)$, define $X \subseteq \mathbb{R}^*$ by the formula $U(y - x)$.
Basic example

In a weakly o-minimal structure, we have definable sets without endpoints in the structure.

Hard to find the midpoint of a convex set without endpoints.

In a valuational structure, there is no reasonable definition of midpoint!
In a weakly o-minimal structure, we have definable sets without endpoints in the structure.
In a weakly o-minimal structure, we have definable sets without endpoints in the structure.

Hard to find the midpoint of a convex set without endpoints.
In a weakly o-minimal structure, we have definable sets without endpoints in the structure.

Hard to find the midpoint of a convex set without endpoints.

In a valuational structure, there is no reasonable definition of midpoint!
Dashing hopes

Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\).

Has Q.E., so we can say what the definable functions are. Every definable function is piecewise linear.

\[\phi(x, y) = P(x) \land P(y) \land x < y. \]

\[F: \mathbb{Q} \to \mathbb{Q} \text{ such that } x < f(x) < \pi. \]

The result generalizes to any nonvaluational cut added to an o-minimal group.
Dashing hopes

Example: $(\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}$. Has Q.E., so we can say what the definable functions are.
Dashing hopes

Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has Q.E., so we can say what the definable functions are.

- Every definable function is piecewise linear.
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has Q.E., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
Example: \((\mathbb{Q}, +, -, <, P, \lambda q)_{q \in \mathbb{Q}}\). Has Q.E., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has Q.E., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F: \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has Q.E., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \rightarrow \mathbb{Q}\) such that \(x < f(x) < \pi\).
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has Q.E., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has Q.E., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
Dashing hopes

Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has Q.E., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
Dashing hopes

Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has Q.E., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has Q.E., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F: \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
- The result generalizes to any nonvaluational cut added to an o-minimal group.
Generalizing the nonvaluational result (1)

Theorem: $(\mathcal{M}, +, <, \ldots)$ o-minimal, and U a new nonvaluational convex subset. Then (\mathcal{M}, U) does not have definable Skolem functions.

Proof (Outline):

- \mathcal{M} o-minimal, U a new convex subset. Define $tp(\sup U/\mathcal{M})$ the type in \mathcal{M} of the supremum of U.
- Given \mathcal{M} as above, let b realize $tp(\sup U/\mathcal{M})$.
- O-minimal structures have prime models over sets; let $\mathcal{N} = \text{pr}(\mathcal{M} \cup \{b\})$.

Lemma: \mathcal{M} is dense in \mathcal{N} if and only if U is nonvaluational.

Theorem [van den Dries, 1998]: Every function $F: \mathcal{M} \to \mathcal{M}$ definable in $(\mathcal{N}, \mathcal{M})$ is piecewise definable in \mathcal{M}.
Theorem: \((\mathcal{M}, +, <, \ldots)\) o-minimal, and \(U\) a new nonvaluational convex subset. Then \((\mathcal{M}, U)\) does not have definable Skolem functions.

Proof (Outline):

...
Generalizing the nonvaluational result (1)

Theorem: \((\mathcal{M}, +, <, \ldots)\) o-minimal, and \(U\) a new nonvaluational convex subset. Then \((\mathcal{M}, U)\) does not have definable Skolem functions.

Proof (Outline):

- \(\mathcal{M}\) o-minimal, \(U\) a new convex subset. Define \(tp(\text{sup}U/\mathcal{M})\) = the type in \(\mathcal{M}\) of the supremum of \(U\).
Theorem: $(\mathcal{M}, +, <, \ldots)$ o-minimal, and U a new nonvaluational convex subset. Then (\mathcal{M}, U) does not have definable Skolem functions.

Proof (Outline):

- \mathcal{M} o-minimal, U a new convex subset. Define $tp(\text{sup}U/M)$ = the type in \mathcal{M} of the supremum of U.
- Given \mathcal{M} as above, let b realize $tp(\text{sup}U/M)$.
Theorem: \((M, +, <, \ldots)\) o-minimal, and \(U\) a new nonvaluational convex subset. Then \((M, U)\) does not have definable Skolem functions.

Proof (Outline):

- \(M\) o-minimal, \(U\) a new convex subset. Define \(tp(\text{sup}U/M)\) = the type in \(M\) of the supremum of \(U\).
- Given \(M\) as above, let \(b\) realize \(tp(\text{sup}U/M)\).
- O-minimal structures have prime models over sets; let \(N = pr(M \cup \{b\})\).
Generalizing the nonvaluational result (1)

Theorem: $(\mathcal{M}, +, <, \ldots)$ o-minimal, and U a new nonvaluational convex subset. Then (\mathcal{M}, U) does not have definable Skolem functions.

Proof (Outline):

- \mathcal{M} o-minimal, U a new convex subset. Define $tp(\sup U/M) = \text{the type in } \mathcal{M} \text{ of the supremum of } U$.
- Given \mathcal{M} as above, let b realize $tp(\sup U/M)$.
- O-minimal structures have prime models over sets; let $\mathcal{N} = pr(\mathcal{M} \cup \{b\})$.
- **Lemma:** \mathcal{M} is dense in \mathcal{N} if and only if U is nonvaluational.
Theorem: \((\mathcal{M}, +, <, \ldots)\) o-minimal, and \(U\) a new nonvaluational convex subset. Then \((\mathcal{M}, U)\) does not have definable Skolem functions.

Proof (Outline):

1. \(\mathcal{M}\) o-minimal, \(U\) a new convex subset. Define \(tp(\text{sup}U/M)\) = the type in \(\mathcal{M}\) of the supremum of \(U\).
2. Given \(\mathcal{M}\) as above, let \(b\) realize \(tp(\text{sup}U/M)\).
3. O-minimal structures have prime models over sets; let \(\mathcal{N} = pr(\mathcal{M} \cup \{b\})\).
4. **Lemma:** \(\mathcal{M}\) is dense in \(\mathcal{N}\) if and only if \(U\) is nonvaluational.
5. **Theorem** [van den Dries, 1998]: Every function \(F : \mathcal{M} \rightarrow \mathcal{M}\) definable in \((\mathcal{N}, \mathcal{M})\) is piecewise definable in \(\mathcal{M}\).
Generalizing the nonvaluational result (2)

Translate the dense pair result:

- Any F definable in (\mathcal{M}, U) is definable in $(\mathcal{N}, \mathcal{M})$: replace $U(x)$ with $x < b$.
Generalizing the nonvaluational result (2)

Translate the dense pair result:

- Any F definable in (\mathcal{M}, U) is definable in $(\mathcal{N}, \mathcal{M})$: replace $U(x)$ with $x < b$.

- Let $\varphi(x, y) = U(x) \land U(y) \land x < y$.
Generalizing the nonvaluational result (2)

Translate the dense pair result:

- Any F definable in (\mathcal{M}, U) is definable in $(\mathcal{N}, \mathcal{M})$: replace $U(x)$ with $x < b$.
- Let $\varphi(x, y) = U(x) \land U(y) \land x < y$.
- If we can define a Skolem function for φ in (\mathcal{M}, U), $F : \mathcal{M} \to \mathcal{M}$ such that $x < F(x) \in U$ for all x
Generalizing the nonvaluational result (2)

Translate the dense pair result:

- Any F definable in (\mathcal{M}, U) is definable in $(\mathcal{N}, \mathcal{M})$: replace $U(x)$ with $x < b$.

- Let $\varphi(x, y) = U(x) \land U(y) \land x < y$.

- If we can define a Skolem function for φ in (\mathcal{M}, U), $F : \mathcal{M} \to \mathcal{M}$ such that $x < F(x) \in U$ for all x...

- ...then this function is definable in $(\mathcal{N}, \mathcal{M})$.

03/10/10 - Christopher Shaw
Translate the dense pair result:

- Any F definable in (\mathcal{M}, U) is definable in $(\mathcal{N}, \mathcal{M})$: replace $U(x)$ with $x < b$.
- Let $\varphi(x, y) = U(x) \land U(y) \land x < y$.
- If we can define a Skolem function for φ in (\mathcal{M}, U), $F : \mathcal{M} \to \mathcal{M}$ such that $x < F(x) \in U$ for all x...
- ...then this function is definable in $(\mathcal{N}, \mathcal{M})$.
Translate the dense pair result:

- Any F definable in (\mathcal{M}, U) is definable in $(\mathcal{N}, \mathcal{M})$:
 replace $U(x)$ with $x < b$.

- Let $\varphi(x, y) = U(x) \land U(y) \land x < y$.

- If we can define a Skolem function for φ in (\mathcal{M}, U), $F : \mathcal{M} \to \mathcal{M}$ such that $x < F(x) \in U$ for all x...

- ...then this function is definable in $(\mathcal{N}, \mathcal{M})$.
By shrinking the domain, we may assume F is strictly increasing and $F(x) - x$ is strictly decreasing.
Generalizing the nonvaluational result (3)

By shrinking the domain, we may assume \(F \) is strictly increasing and \(F(x) - x \) is strictly decreasing.

We may colloquially say \(\lim_{x \to \sup(U)} (F(x) - x) = 0 \)
By shrinking the domain, we may assume F is strictly increasing and $F(x) - x$ is strictly decreasing.

We may colloquially say $\lim_{x \rightarrow \sup(U)} (F(x) - x) = 0$

...$
\ldots \mathcal{M} \models \theta = (\forall \varepsilon > 0)(\forall x \in U)(\exists \delta > 0)(x + \delta \in U \land 0 < F(x + \delta) - x < \varepsilon)$
Generalizing the nonvaluational result (3)

\[F \subseteq (\mathbb{N}, \mathbb{M}) \]

By the dense pair result, there is an interval \(I \) overlapping with \(\sup(U) \) and a partial function \(F' \) definable in \(\mathbb{M} \) such that \(F \upharpoonright U = F' \).

\(U \) is nonvaluational, so given \(\delta > 0 \), there is \(a \in U \) such that \(a + \delta > U \).

This contradicts \(\mathbb{M} \models \theta \).
Generalizing the nonvaluational result (3)

- F is definable in $(\mathcal{N}, \mathcal{M})$
F is definable in (N, M)

By the dense pair result, there is an *interval* I overlapping with $\text{sup}(U)$ and a partial function F' definable in M such that $F|U = F'$.

03/10/10 - Christopher Shaw
Generalizing the nonvaluational result (3)

- F is definable in $(\mathcal{N}, \mathcal{M})$
- By the dense pair result, there is an interval I overlapping with $\text{sup}(U)$ and a partial function F' definable in \mathcal{M} such that $F \upharpoonright U = F'$.
- U is nonvaluational, so given $\delta > 0$, there is $a \in U$ such that $a + \delta > U$.

\[F(x) \quad I \quad F'(x) \quad y = x \quad U \]
Generalizing the nonvaluational result (3)

- F is definable in $(\mathcal{N}, \mathcal{M})$
- By the dense pair result, there is an interval I overlapping with $\text{sup}(U)$ and a partial function F' definable in \mathcal{M} such that $F \upharpoonright U = F'$.
- U is nonvaluational, so given $\delta > 0$, there is $a \in U$ such that $a + \delta > U$.
- This contradicts $\mathcal{M} \models \theta$.
1 Background
 - Brief History
 - Model - definable - QE - DNF - o-minimal - Skolem function
 - Weakly o-minimal structures
 - Monotonicity

2 Valuational and nonvaluational cuts
 - Motivation
 - Definable subgroups
 - Good news
 - Pathologies

3 Skolem functions in valuational structures
 - T-immunity
 - Technique for elimination
 - Corollaries
For certain valuational structures, we can perform a direct calculation of quantifier elimination.

Definition of T-immunity
For certain valuational structures, we can perform a direct calculation of quantifier elimination.

Skolem functions basically come for free in our calculation.
For certain valuational structures, we can perform a direct calculation of quantifier elimination.

Skolem functions basically come for free in our calculation.

Fix T, an o-minimal expansion of a group; let $\mathcal{M} \models T$. A subset $V \subset M$ is T-immune if V is convex, and for any 0-definable continuous partial function $F : \mathcal{M} \to \mathcal{M}$, $F(V) \subseteq V$. We say $(\mathcal{M}, V) \models T_{\text{immune}}$.
For certain valuational structures, we can perform a direct calculation of quantifier elimination.

Skolem functions basically come for free in our calculation.

Fix T, an o-minimal expansion of a group; let $\mathcal{M} \models T$. A subset $V \subset M$ is T-immune if V is convex, and for any 0-definable continuous partial function $F : \mathcal{M} \to \mathcal{M}$, $F(V) \subseteq V$. We say $(\mathcal{M}, V) \models T_{\text{immune}}$.

Example: If $\mathcal{L} = \{+, <, 0\}$, \mathcal{M} is any o-minimal group, and V any proper convex subgroup, then (\mathcal{M}, V) is T-immune.
The main result

Theorem: Let $\mathcal{M} \models T$ be an o-minimal expansion of a group which admits elimination of quantifiers, and V a T-immune set. Let ε, c be new constant symbols, and $\varepsilon^\mathcal{M} \in V$ and $c^\mathcal{M}$ a positive element of $\mathcal{M} \setminus V$. Then $Th((\mathcal{M}, V)_c)$ admits elimination of quantifiers and has definable Skolem functions.
The main result

Theorem: Let $\mathcal{M} \models T$ be an o-minimal expansion of a group which admits elimination of quantifiers, and V a T-immune set. Let ε, c be new constant symbols, and $\varepsilon^\mathcal{M} \in V$ and $c^\mathcal{M}$ a positive element of $\mathcal{M} \setminus V$. Then $Th((\mathcal{M}, V)_c)$ admits elimination of quantifiers and has definable Skolem functions.

- To eliminate quantifiers directly, it suffices to eliminate a single existential quantifier from a primitive formula (finite conjunction of atomic and negatomic formulas).
The main result

Theorem: Let $\mathcal{M} \models T$ be an o-minimal expansion of a group which admits elimination of quantifiers, and V a T-immune set. Let ε, c be new constant symbols, and $\varepsilon^\mathcal{M} \in V$ and $c^\mathcal{M}$ a positive element of $\mathcal{M} \setminus V$. Then $Th((\mathcal{M}, V)_c)$ admits elimination of quantifiers and has definable Skolem functions.

- To eliminate quantifiers directly, it suffices to eliminate a single existential quantifier from a primitive formula (finite conjunction of atomic and negatomic formulas).
- This comes from the Disjunctive Normal Form theorem.
The main result

Theorem: Let $\mathcal{M} \models T$ be an o-minimal expansion of a group which admits elimination of quantifiers, and V a T-immune set. Let ε, c be new constant symbols, and $\varepsilon^{\mathcal{M}} \in V$ and $c^{\mathcal{M}}$ a positive element of $\mathcal{M} \setminus V$. Then $Th((\mathcal{M}, V)_c)$ admits elimination of quantifiers and has definable Skolem functions.

- To eliminate quantifiers directly, it suffices to eliminate a single existential quantifier from a primitive formula (finite conjunction of atomic and negatomic formulas).
- This comes from the Disjunctive Normal Form theorem.
- To prove QE this way often uses induction on formula complexity.
The main result

Theorem: Let $\mathcal{M} \models T$ be an o-minimal expansion of a group which admits elimination of quantifiers, and V a T-immune set. Let ε, c be new constant symbols, and $\varepsilon^\mathcal{M} \in V$ and $c^\mathcal{M}$ a positive element of $\mathcal{M} \setminus V$. Then $Th((\mathcal{M}, V)_c)$ admits elimination of quantifiers and has definable Skolem functions.

- To eliminate quantifiers directly, it suffices to eliminate a single existential quantifier from a primitive formula (finite conjunction of atomic and negatomic formulas).
- This comes from the Disjunctive Normal Form theorem.
- To prove QE this way often uses induction on formula complexity.
- We proceed on a more intuitive path.
Lemma: Let U_0, \ldots, U_{n-1} be convex subsets of a totally ordered set.
Lemma: Let U_0, \ldots, U_{n-1} be convex subsets of a totally ordered set. Then there are $j, k < n$ (possibly $j = k$) such that
$$\bigcap_{i<n} U_i = U_j \cap U_k.$$
Lemma: Let U_0, \ldots, U_{n-1} be convex subsets of a totally ordered set. Then there are $j, k < n$ (possibly $j = k$) such that

$$\bigcap_{i<n} U_i = U_j \cap U_k.$$
Lemma: Let U_0, \ldots, U_{n-1} be convex subsets of a totally ordered set. Then there are $j, k < n$ (possibly $j = k$) such that
\[
\bigcap_{i<n} U_i = U_j \cap U_k.
\]
Lemma: Let U_0, \ldots, U_{n-1} be convex subsets of a totally ordered set. Then there are $j, k < n$ (possibly $j = k$) such that

$$\bigcap_{i<n} U_i = U_j \cap U_k.$$
Lemma: Let U_0, \ldots, U_{n-1} be convex subsets of a totally ordered set. Then there are $j, k < n$ (possibly $j = k$) such that
\[
\bigcap_{i<n} U_i = U_j \cap U_k.
\]

In particular, $\bigcap_{i<n} U_i$ is nonempty if and only if for each $i, j < n$, $U_j \cap U_k$ is nonempty.
Consequence of the lemma:
Consequence of the lemma:

- Given a primitive formula $\exists x \bigwedge_{i} \varphi_{i}(x, \bar{y})$
Consequence of the lemma:

- Given a primitive formula \(\exists x \bigwedge_i \varphi_i(x, \bar{y}) \)
- Suppose (\(\ast \)): \(\varphi_i(\mathcal{M}, \bar{b}) \) is convex for each \(\bar{b} \in \mathcal{M}^n \)
Consequence of the lemma:

1. Given a primitive formula \(\exists x \bigwedge_i \varphi_i(x, \bar{y}) \)
2. Suppose \((\ast)\): \(\varphi_i(M, \bar{b})\) is convex for each \(\bar{b} \in M^n\)
3. Then \(\exists x \left(\bigwedge_i \varphi_i(x, \bar{y}) \right) \iff \bigwedge_{i<j} \exists x (\varphi_i(x, \bar{y}) \land \varphi_j(x, \bar{y})) \)
Consequence of the lemma:

- Given a primitive formula $\exists x \bigwedge_i \varphi_i(x, \bar{y})$
- Suppose (\ast): $\varphi_i(M, \bar{b})$ is convex for each $\bar{b} \in M^n$
- Then $\exists x \left(\bigwedge_i \varphi_i(x, \bar{y}) \right) \iff \bigwedge_{i < j} \exists x (\varphi_i(x, \bar{y}) \land \varphi_j(x, \bar{y}))$
- M is o-minimal and QE!
Consequence of the lemma:

- Given a primitive formula $\exists x \bigwedge_i \varphi_i(x, \bar{y})$

- Suppose (\ast): $\varphi_i(M, \bar{b})$ is convex for each $\bar{b} \in M^n$

- Then $\exists x \left(\bigwedge_i \varphi_i(x, \bar{y}) \right) \iff \bigwedge_i \exists x (\varphi_i(x, \bar{y}) \land \varphi_j(x, \bar{y}))$

- M is o-minimal and QE! We may assume every formula $\varphi(x, \bar{y})$ of \mathcal{L} satisfies (\ast).
To get the convexity of \(\varphi(x, \bar{b}) \) for formulas of the expanded language, we form an extension by definitions:

- Add two unary predicates \(\{L, R\} \) to the language.
To get the convexity of $\varphi(x, \bar{b})$ for formulas of the expanded language, we form an extension by definitions:

- Add two unary predicates $\{L, R\}$ to the language.
- Interpret: $L^M = \text{everything to the left of } V$

 $R^M = \text{everything to the right of } V$
To get the convexity of $\varphi(x, \bar{b})$ for formulas of the expanded language, we form an extension by definitions:

- Add two unary predicates $\{L, R\}$ to the language.
- Interpret: $L^M = \text{everything to the left of } V$

 $R^M = \text{everything to the right of } V$

- L and R are quantifier-free definable, so they add no new complexity to the language.
To get the convexity of $\varphi(x, \bar{b})$ for formulas of the expanded language, we form an extension by definitions:

- Add two unary predicates $\{L, R\}$ to the language.
- Interpret: $L^M = \text{everything to the left of } V$

 $R^M = \text{everything to the right of } V$

- L and R are quantifier-free definable, so they add no new complexity to the language.
- Replace $\neg V$ with $L \lor R$.

To get the convexity of $\varphi(x, \bar{b})$ for formulas of the expanded language, we form an extension by definitions:

- Add two unary predicates $\{L, R\}$ to the language.
- Interpret: $L^\mathcal{M} =$ everything to the left of V

 $R^\mathcal{M} =$ everything to the right of V

- L and R are quantifier-free definable, so they add no new complexity to the language.
- Replace $\neg V$ with $L \lor R$.
- “Reorganize.”
In the expanded language we have to deal with formulas of the form $\exists x V(F(x, \bar{y}))$.
In the expanded language we have to deal with formulas of the form $\exists x V(F(x, \bar{y}))$.

- Use cellular decomposition.
In the expanded language we have to deal with formulas of the form $\exists x V(F(x, \bar{y}))$.

- Use cellular decomposition.
- $\exists x V(F(x, \bar{y}))$ becomes $\exists x \bigvee_i (V(F_i(x, \bar{y})) \land x\bar{y} \in C_i)$
 where each C_i is a regular cell.
In the expanded language we have to deal with formulas of the form $\exists x V(F(x, \bar{y}))$.

- Use cellular decomposition.
- $\exists x V(F(x, \bar{y}))$ becomes $\exists x \bigvee_i (V(F_i(x, \bar{y})) \land x\bar{y} \in C_i)$
 where each C_i is a regular cell.
- Each regular cell C_i is quantifier-free definable, since \mathcal{M} eliminates quantifiers.
In the expanded language we have to deal with formulas of the form $\exists x V(F(x, \bar{y}))$.

- Use cellular decomposition.
- $\exists x V(F(x, \bar{y}))$ becomes $\exists x \bigvee_{i} (V(F_i(x, \bar{y})) \land x\bar{y} \in C_i)$

 where each C_i is a regular cell.

- Each regular cell C_i is quantifier-free definable, since M eliminates quantifiers.
- Each $F(C_{i\bar{b}})$ is convex, since F is monotone in x.

QE
Define a \ast-atomic formula (note that each is convex and quantifier-free):
Define a \ast-atomic formula (note that each is convex and quantifier-free):

- $\varphi(x, \bar{y})$ for φ an \mathcal{L}-formula with $\varphi(M, \bar{b})$ convex for each $\bar{b} \in M^n$
- $V(F(x, \bar{y}))$,
- $L(F(x, \bar{y}))$,
- $R(F(x, \bar{y}))$, for a 0-definable partial function F on a regular cell
Define a \star-atomic formula (note that each is convex and quantifier-free):

- $\varphi(x, \bar{y})$ for φ an \mathcal{L}-formula with $\varphi(M, \bar{b})$ convex for each $\bar{b} \in M^n$
- $V(F(x, \bar{y}))$
- $L(F(x, \bar{y}))$
- $R(F(x, \bar{y}))$, for a 0-definable partial function F on a regular cell

Get a \star-disjunctive normal form theorem (\star-DNF).
Define a $\tilde{*}$-atomic formula (note that each is convex and quantifier-free):

- $\varphi(x, \bar{y})$ for φ an \mathcal{L}-formula with $\varphi(M, \bar{b})$ convex for each $\bar{b} \in M^n$
- $V(F(x, \bar{y}))$
- $L(F(x, \bar{y}))$
- $R(F(x, \bar{y}))$, for a 0-definable partial function F on a regular cell

Get a $\tilde{*}$-disjunctive normal form theorem ($\tilde{*}$-DNF).

It now suffices to eliminate the existential from a “$\tilde{*}$-primitive formula.”
Define a \(\star \)-atomic formula (note that each is convex and quantifier-free):

- \(\varphi(x, \bar{y}) \) for \(\varphi \) an \(\mathcal{L} \)-formula with \(\varphi(\mathcal{M}, \bar{b}) \) convex for each \(\bar{b} \in \mathcal{M}^n \)
- \(V(F(x, \bar{y})) \),
- \(L(F(x, \bar{y})) \),
- \(R(F(x, \bar{y})) \), for a 0-definable partial function \(F \) on a regular cell

Get a \(\star \)-disjunctive normal form theorem (\(\star \)-DNF).

It now suffices to eliminate the existential from a “\(\star \)-primitive formula.”

Using the topological lemma, it suffices to eliminate the existential from a pair of \(\star \)-atomic formulas.
Again, use the topological lemma:
Again, use the topological lemma:

- Look at a \ast-primitive formula $\varphi(\bar{x}, y) = \bigwedge_i \varphi_i(\bar{x}, y)$.
Again, use the topological lemma:

- Look at a $*$-primitive formula $\varphi(\bar{x}, y) = \bigwedge_i \varphi_i(\bar{x}, y)$.
- By the lemma, given \bar{a} from \mathbb{R}^*,
 $\varphi(\bar{a}, \mathcal{M}) = (\varphi_j(\bar{a}, y) \land \varphi_k(\bar{a}, y))^{\mathcal{M}}$ for some j, k.

Weakly o-minimal structures and Skolem functions
Skolem functions

Again, use the topological lemma:

- Look at a \ast-primitive formula $\varphi(\bar{x}, y) = \bigwedge_i \varphi_i(\bar{x}, y)$.

- By the lemma, given \bar{a} from \mathbb{R}^*,
 $$\varphi(\bar{a}, M) = (\varphi_j(\bar{a}, y) \land \varphi_k(\bar{a}, y))^M$$
 for some j, k.

- If we have a Skolem function for each pairwise conjunction of \ast-atomic formulas, we have a function for φ.
Again, use the topological lemma:

- Look at a \(*\)-primitive formula \(\varphi(\bar{x}, y) = \bigwedge_i \varphi_i(\bar{x}, y)\).

- By the lemma, given \(\bar{a}\) from \(\mathbb{R}^*\),
 \[\varphi(\bar{a}, M) = (\varphi_j(\bar{a}, y) \land \varphi_k(\bar{a}, y))^M\]
 for some \(j, k\).

- If we have a Skolem function for each pairwise conjunction of \(*\)-atomic formulas, we have a function for \(\varphi\).

- For an arbitrary formula, write in \(*\)-DNF, and use the functions for each primitive formula.
Again, use the topological lemma:

- Look at a \(\ast \)-primitive formula \(\varphi(\bar{x}, y) = \bigwedge_i \varphi_i(\bar{x}, y) \).

- By the lemma, given \(\bar{a} \) from \(\mathbb{R}^\ast \),
 \[\varphi(\bar{a}, \mathcal{M}) = (\varphi_j(\bar{a}, y) \land \varphi_k(\bar{a}, y))^\mathcal{M} \text{ for some } j, k. \]

- If we have a Skolem function for each pairwise conjunction of \(\ast \)-atomic formulas, we have a function for \(\varphi \).

- For an arbitrary formula, write in \(\ast \)-DNF, and use the functions for each primitive formula.

- Remains to check each pair of \(\ast \)-atomic formulas.
Again, use the topological lemma:

- Look at a \ast-primitive formula $\varphi(\bar{x}, y) = \bigwedge_i \varphi_i(\bar{x}, y)$.

- By the lemma, given \bar{a} from \mathbb{R}^*,
 $\varphi(\bar{a}, \mathcal{M}) = (\varphi_j(\bar{a}, y) \land \varphi_k(\bar{a}, y))^{\mathcal{M}}$ for some j, k.

- If we have a Skolem function for each pairwise conjunction of \ast-atomic formulas, we have a function for φ.

- For an arbitrary formula, write in \ast-DNF, and use the functions for each primitive formula.

- Remains to check each pair of \ast-atomic formulas.

- Do this simultaneously with quantifier elimination.
1 Background
- Brief History
- Model - definable - QE - DNF - o-minimal - Skolem function
- Weakly o-minimal structures
- Monotonicity

2 Valuational and nonvaluational cuts
- Motivation
- Definable subgroups
- Good news
- Pathologies

3 Skolem functions in valuational structures
- T-immunity
- Technique for elimination
- Corollaries
Assume \((\mathcal{M}, V)\) is \(T\)-immune.
Assume \((\mathcal{M}, V)\) is \(T\)-immune.

- If \(F : \mathcal{M}^n \to \mathcal{M}\) is partial, 0-definable, continuous, then
 \(F(V^n) \subseteq V\).
Technical lemmas ("Math")

Assume \((\mathcal{M}, V)\) is \(T\)-immune.

- If \(F : \mathcal{M}^n \to \mathcal{M}\) is partial, 0-definable, continuous, then \(F(V^n) \subseteq V\).
- "\(V\)-faithfulness:" Given \(F(x, \bar{y}), \bar{b} \in \mathcal{M}^n\) fixed, for any \(a \in \mathcal{M}\), if \(F(a, \bar{b}) \in V\), then for any \(e \in V\), \(F(a + e \in V)\).
Technical lemmas ("Math")

Assume \((\mathcal{M}, \mathcal{V})\) is \(T\)-immune.

- If \(F : \mathcal{M}^n \to \mathcal{M}\) is partial, 0-definable, continuous, then \(F(\mathcal{V}^n) \subseteq \mathcal{V}\).

- "\(V\)-faithfulness:" Given \(F(x, \bar{y}), \bar{b} \in \mathcal{M}^n\) fixed, for any \(a \in \mathcal{M}\), if \(F(a, \bar{b}) \in \mathcal{V}\), then for any \(e \in \mathcal{V}\), \(F(a + e \in \mathcal{V})\).

- "No slow-growing functions:" If \(F_{\bar{b}}\) is strictly increasing and \(F(a, \bar{b}) \in \mathcal{V}\), then for any \(d \in \mathcal{M} \setminus \mathcal{V}\), \(F(a + d, \bar{b}) \notin \mathcal{V}\).
Technical lemmas ("Math")

Assume \((\mathcal{M}, V)\) is \(T\)-immune.

- If \(F : \mathcal{M}^n \to \mathcal{M}\) is partial, 0-definable, continuous, then \(F(V^n) \subseteq V\).

- "V-faithfulness:" Given \(F(x, \bar{y}), \bar{b} \in \mathcal{M}^n\) fixed, for any \(a \in \mathcal{M}\), if \(F(a, \bar{b}) \in V\), then for any \(e \in V\), \(F(a + e \in V)\).

- "No slow-growing functions:" If \(F_{\bar{b}}\) is strictly increasing and \(F(a, \bar{b}) \in V\), then for any \(d \in \mathcal{M}\setminus V\), \(F(a + d, \bar{b}) \notin V\).

- "If \(F\) and \(G\) are far apart, they stay far apart:" If \(F_{\bar{b}}\) and \(G_{\bar{b}}\) are both strictly increasing, and there is \(a\) such that \(F(a, \bar{b}) \in V\) and \(G(a, \bar{b}) \notin V\), then for every \(a\), \(F(a, \bar{b}) \in V \Rightarrow G(a, \bar{b}) \notin V\).
Case analysis (1)

We may assume a $*$-primitive formula takes one of the following forms:

1. $\exists x \, \varphi(x, \bar{y})$, for φ an L-formula and $\varphi(M, \bar{b})$ convex for every $\bar{b} \in M$
2. $\exists x \, (V(F(x, \bar{y})))$
3. $\exists x \, (L(F(x, \bar{y})))$ or $\exists x \, (R(F(x, \bar{y})))$
4. $\exists x \, (\varphi(x, \bar{y}) \land V(F(x, \bar{y})))$ or $\exists x \, (\varphi(x, \bar{y}) \land L(G(x, \bar{y})))$ or $\exists x \, (\varphi(x, \bar{y}) \land R(G(x, \bar{y})))$ or $\exists x \, (\varphi(x, \bar{y}) \land R(G(x, \bar{y})))$
5. $\exists x \, (V(F(x, \bar{y})) \land V(G(x, \bar{y})))$ or $\exists x \, (V(F(x, \bar{y})) \land L(G(x, \bar{y})))$ or $\exists x \, (V(F(x, \bar{y})) \land R(G(x, \bar{y})))$ or $\exists x \, (V(F(x, \bar{y})) \land R(G(x, \bar{y})))$
6. $\exists x \, (L(F(x, \bar{y})) \land L(G(x, \bar{y})))$ or $\exists x \, (L(F(x, \bar{y})) \land R(G(x, \bar{y})))$ or $\exists x \, (R(F(x, \bar{y})) \land R(G(x, \bar{y})))$
Case analysis (1)

We may assume a \ast-primitive formula takes one of the following forms:

(1) $\exists x \varphi(x, \bar{y})$, for φ an \mathcal{L}-formula and $\varphi(\mathcal{M}, \bar{b})$ convex for every $\bar{b} \in \mathcal{M}^n$
Case analysis (1)

We may assume a \ast-primitive formula takes one of the following forms:

1. $\exists x \varphi(x, \bar{y})$, for φ an \mathcal{L}-formula and $\varphi(M, \bar{b})$ convex for every $\bar{b} \in M^n$

2. $\exists x (V(F(x, \bar{y})))$
Case analysis (1)

We may assume a \ast-primitive formula takes one of the following forms:

1. $\exists x \varphi(x, \bar{y})$, for φ an \mathcal{L}-formula and $\varphi(\mathcal{M}, \bar{b})$ convex for every $\bar{b} \in \mathcal{M}^n$
2. $\exists x \left(V(F(x, \bar{y})) \right)$
3. $\exists x \left(L(F(x, \bar{y})) \right)$ or $\exists x \left(R(F(x, \bar{y})) \right)$
Case analysis (1)

We may assume a *-primitive formula takes one of the following forms:

1. \(\exists x \varphi(x, \bar{y}) \), for \(\varphi \) an \(\mathcal{L} \)-formula and \(\varphi(M, \bar{b}) \) convex for every \(\bar{b} \in M^n \)
2. \(\exists x (V(F(x, \bar{y}))) \)
3. \(\exists x (L(F(x, \bar{y}))) \) or \(\exists x (R(F(x, \bar{y}))) \)
4. \(\exists x (\varphi(x, \bar{y}) \land V(F(x, \bar{y}))) \) or \(\exists x (\varphi(x, \bar{y}) \land L(F(x, \bar{y}))) \) or \(\exists x (\varphi(x, \bar{y}) \land R(F(x, \bar{y}))) \), for \(\varphi \) as above
We may assume a \ast-primitive formula takes one of the following forms:

1. $\exists x \varphi(x, \bar{y})$, for φ an \mathcal{L}-formula and $\varphi(M, \bar{b})$ convex for every $\bar{b} \in M^n$

2. $\exists x \left(V(F(x, \bar{y})) \right)$

3. $\exists x \left(L(F(x, \bar{y})) \right)$ or $\exists x \left(R(F(x, \bar{y})) \right)$

4. $\exists x \left(\varphi(x, \bar{y}) \land V(F(x, \bar{y})) \right)$ or $\exists x \left(\varphi(x, \bar{y}) \land L(F(x, \bar{y})) \right)$ or $\exists x \left(\varphi(x, \bar{y}) \land R(F(x, \bar{y})) \right)$, for φ as above

5. $\exists x \left(V(F(x, \bar{y})) \land V(G(x, \bar{y})) \right)$
Case analysis (1)

We may assume a *-primitive formula takes one of the following forms:

1. \(\exists x \varphi(x, \bar{y}), \) for \(\varphi \) an \(\mathcal{L} \)-formula and \(\varphi(M, \bar{b}) \) convex for every \(\bar{b} \in M^n \)

2. \(\exists x \left(V(F(x, \bar{y})) \right) \)

3. \(\exists x \left(L(F(x, \bar{y})) \right) \) or \(\exists x \left(R(F(x, \bar{y})) \right) \)

4. \(\exists x \left(\varphi(x, \bar{y}) \land V(F(x, \bar{y})) \right) \) or \(\exists x \left(\varphi(x, \bar{y}) \land L(F(x, \bar{y})) \right) \) or \(\exists x \left(\varphi(x, \bar{y}) \land R(F(x, \bar{y})) \right) \), for \(\varphi \) as above

5. \(\exists x \left(V(F(x, \bar{y})) \land V(G(x, \bar{y})) \right) \)

6. \(\exists x \left(V(F(x, \bar{y})) \land L(G(x, \bar{y})) \right) \) or \(\exists x \left(V(F(x, \bar{y})) \land R(G(x, \bar{y})) \right) \) or \(\exists x \left(L(F(x, \bar{y})) \land L(G(x, \bar{y})) \right) \) or \(\exists x \left(L(F(x, \bar{y})) \land R(G(x, \bar{y})) \right) \) or \(\exists x \left(R(F(x, \bar{y})) \land R(G(x, \bar{y})) \right) \)
Case analysis (2)

(1) For \(\mathcal{L} \)-formulas, QE and Skolem functions are known.
Case analysis (2)

(1) For \mathcal{L}-formulas, QE and Skolem functions are known.
(2) For $V(F(x, \bar{y}))$
Case analysis (2)

(1) For \(\mathcal{L} \)-formulas, QE and Skolem functions are known.

(2) For \(V(F(x, \vec{y})) \): fix \(\vec{b} \in M^n \); assume the domain of \(F_{\vec{b}} \) is a bounded interval \((\alpha, \beta)\), and \(F_{\vec{b}} \) increasing.
Case analysis (2)

(1) For \mathcal{L}-formulas, QE and Skolem functions are known.

(2) For $V(F(x, \bar{y}))$: fix $\bar{b} \in M^n$; assume the domain of $F_{\bar{b}}$ is a bounded interval (α, β), and $F_{\bar{b}}$ increasing. Check endpoint behavior at $\alpha + \varepsilon$ and $\beta - \varepsilon$.
Case analysis (2)

(1) For \mathcal{L}-formulas, QE and Skolem functions are known.

(2) For $V(F(x, \bar{y}))$: fix $\bar{b} \in \mathcal{M}^n$; assume the domain of $F_{\bar{b}}$ is a bounded interval (α, β), and $F_{\bar{b}}$ increasing. Check endpoint behavior at $\alpha + \varepsilon$ and $\beta - \varepsilon$.
Case analysis (2)

(1) For \mathcal{L}-formulas, QE and Skolem functions are known.

(2) For $V(F(x, \bar{y}))$: fix $\bar{b} \in M^n$; assume the domain of $F_{\bar{b}}$ is a bounded interval (α, β), and $F_{\bar{b}}$ increasing. Check endpoint behavior at $\alpha + \varepsilon$ and $\beta - \varepsilon$.

$L(F(\alpha + \varepsilon, \bar{b})) \land R(F(\beta - \varepsilon, \bar{b}))$, or
Case analysis (2)

1. For \mathcal{L}-formulas, QE and Skolem functions are known.
2. For $V(F(x, \bar{y}))$: fix $\bar{b} \in M^n$; assume the domain of $F_{\bar{b}}$ is a bounded interval (α, β), and $F_{\bar{b}}$ increasing. Check endpoint behavior at $\alpha + \varepsilon$ and $\beta - \varepsilon$.

$$V(F(\alpha + \varepsilon, \bar{b})), \text{ or } V(F(\beta - \varepsilon, \bar{b})),$$
Case analysis (2)

(1) For \mathcal{L}-formulas, QE and Skolem functions are known.

(2) For $V(F(x, \bar{y}))$: fix $\bar{b} \in M^n$; assume the domain of $F_{\bar{b}}$ is a bounded interval (α, β), and $F_{\bar{b}}$ increasing. Check endpoint behavior at $\alpha + \varepsilon$ and $\beta - \varepsilon$.

\[V(F(\alpha + \varepsilon, \bar{b})) \land R(F(\beta - \varepsilon, \bar{b})), \text{ or } V(F(\beta - \varepsilon, \bar{b})), \text{ or } V(F(\alpha + \varepsilon, \bar{b})). \]
(3) For $R(F(x, \bar{y}))$

(3) For $R(F(\alpha + \varepsilon, \bar{b}))$ or $R(F(\beta - \varepsilon, \bar{b}))$. Other cases similar.
Case analysis (3)

(3) For $R(F(x, \bar{y}))$: fix $\bar{b} \in \mathcal{M}^n$; again assume the domain of $F_{\bar{b}}$ is a bounded interval (α, β), and $F_{\bar{b}}$ increasing.
Case analysis (3)

(3) For $R(F(x, \bar{y}))$: fix $\bar{b} \in \mathcal{M}^n$; again assume the domain of $F_{\bar{b}}$ is a bounded interval (α, β), and $F_{\bar{b}}$ increasing. Check endpoint behavior at $\alpha + \varepsilon$ and $\beta - \varepsilon$.
(3) For \(R(F(x, \bar{y})) \): fix \(\bar{b} \in \mathcal{M}^n \); again assume the domain of \(F_{\bar{b}} \) is a bounded interval \((\alpha, \beta)\), and \(F_{\bar{b}} \) increasing. Check endpoint behavior at \(\alpha + \varepsilon \) and \(\beta - \varepsilon \).
Case analysis (3)

(3) For \(R(F(x, \bar{y})) \): fix \(\bar{b} \in \mathcal{M}^n \); again assume the domain of \(F_{\bar{b}} \) is a bounded interval \((\alpha, \beta) \), and \(F_{\bar{b}} \) increasing. Check endpoint behavior at \(\alpha + \varepsilon \) and \(\beta - \varepsilon \).

\[R(F(\beta - \varepsilon, \bar{b})) \text{, or} \]

\[R(F(\alpha + \varepsilon, \bar{b})) \text{, or} \]
(3) For \(R(F(x, y)) \): fix \(\bar{b} \in \mathcal{M}^n \); again assume the domain of \(F_{\bar{b}} \) is a bounded interval \((\alpha, \beta)\), and \(F_{\bar{b}} \) increasing. Check endpoint behavior at \(\alpha + \varepsilon \) and \(\beta - \varepsilon \).

\[R(F(\beta - \varepsilon, \bar{b})), \text{ or} \]

\[R(F(\alpha + \varepsilon, \bar{b})). \]
For $R(F(x, \bar{y}))$: fix $\bar{b} \in \mathcal{M}^n$; again assume the domain of $F_{\bar{b}}$ is a bounded interval (α, β), and $F_{\bar{b}}$ increasing. Check endpoint behavior at $\alpha + \varepsilon$ and $\beta - \varepsilon$.

- $R(F(\beta - \varepsilon, \bar{b}))$, or
Case analysis (3)

(3) For $R(F(x, \bar{y}))$: fix $\bar{b} \in \mathcal{M}^n$; again assume the domain of $F_{\bar{b}}$ is a bounded interval (α, β), and $F_{\bar{b}}$ increasing. Check endpoint behavior at $\alpha + \varepsilon$ and $\beta - \varepsilon$.

\bullet $R(F(\alpha + \varepsilon, \bar{b}))$.

03/10/10 - Christopher Shaw
Case analysis (3)

- Other cases similar.
1 Background
 - Brief History
 - Model - definable - QE - DNF - o-minimal - Skolem function
 - Weakly o-minimal structures
 - Monotonicity

2 Valuational and nonvaluational cuts
 - Motivation
 - Definable subgroups
 - Good news
 - Pathologies

3 Skolem functions in valuational structures
 - T-immunity
 - Technique for elimination
 - Corollaries
Corollaries

Let \((\mathcal{M}, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(\mathcal{M}\).
Corollaries

Let $(\mathcal{M}, +, <, \ldots)$ be o-minimal and U a convex subset of \mathcal{M}.

- If (\mathcal{M}, U) is nonvaluational, there are no Skolem functions.
Corollaries

Let $(\mathcal{M}, +, <, \ldots)$ be o-minimal and U a convex subset of \mathcal{M}.

- If (\mathcal{M}, U) is nonvaluational, there are no Skolem functions.
- If (\mathcal{M}, U) is valuational, (\mathcal{M}, U) has a convex definable subgroup.
Corollaries

Let \((M, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(M\).

- If \((M, U)\) is nonvaluational, there are no Skolem functions.
- If \((M, U)\) is valuational, \((M, U)\) has a convex definable subgroup, thus cannot have Skolem functions and elimination of imaginaries.
Corollaries

Let \((\mathcal{M}, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(\mathcal{M}\).

- If \((\mathcal{M}, U)\) is nonvaluational, there are no Skolem functions.
- If \((\mathcal{M}, U)\) is valuational, \((\mathcal{M}, U)\) has a convex definable subgroup, thus cannot have Skolem functions and elimination of imaginaries. Therefore if \((\mathcal{M}, U)\) has Skolem functions and elimination of imaginaries, \(U\) must be an interval, and \((\mathcal{M}, U)\) is o-minimal.
Let \((\mathcal{M}, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(\mathcal{M}\).

- If \((\mathcal{M}, U)\) is nonvaluational, there are no Skolem functions.
- If \((\mathcal{M}, U)\) is valuational, \((\mathcal{M}, U)\) has a convex definable subgroup, thus cannot have Skolem functions and elimination of imaginaries.
 Therefore if \((\mathcal{M}, U)\) has Skolem functions and elimination of imaginaries, \(U\) must be an interval, and \((\mathcal{M}, U)\) is o-minimal.

- If \((\mathcal{M}, U)\) is \(T\)-immune, then \((\mathcal{M}, U)_c\) has Skolem functions, but still has a definable proper subgroup.
Let \((M, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(M\).

- If \((M, U)\) is nonvaluational, there are no Skolem functions.
- If \((M, U)\) is valuational, \((M, U)\) has a convex definable subgroup, thus cannot have Skolem functions and elimination of imaginaries.

Therefore if \((M, U)\) has Skolem functions and elimination of imaginaries, \(U\) must be an interval, and \((M, U)\) is o-minimal.

- If \((M, U)\) is \(T\)-immune, then \((M, U)_c\) has Skolem functions, but still has a definable proper subgroup, thus \((M, U)\) does not eliminate imaginaries.
Future work - generalizing the results
Future work - generalizing the results

- Generalize Skolem function technique to “T-convex” structures (van den Dries)
Future work - generalizing the results

- Generalize Skolem function technique to “T-convex” structures (van den Dries)
- T-convexity is *sufficient*; is it necessary?
Future work - generalizing the results

- Generalize Skolem function technique to “T-convex” structures (van den Dries)
- T-convexity is *sufficient*; is it necessary? (modulo trivialities)
Future work - generalizing the results

- Generalize Skolem function technique to “T-convex” structures (van den Dries)
- T-convexity is *sufficient*; is it necessary? (modulo trivialities)
- Speculation:
Future work - generalizing the results

- Generalize Skolem function technique to “T-convex” structures (van den Dries)
- T-convexity is *sufficient*; is it necessary? (modulo trivialities)
- Speculation: yes.