Definability in weakly o-minimal structures

April 13, 2007

Christopher Shaw
Department of Mathematics
University of Maryland, College Park
Outline

1. Background and definitions
2. o-minimal structures (the “classical” results)
3. Weakly o-minimal structures
4. Hopes, dreams, and methods
Model theory: Background

Model theoretic programme: Study sets *definable* in a *model.*

For our purposes, “definable” \iff described by a *formula* φ using symbols from a fixed language L. (L is always assumed to contain logical connectives $\forall, \exists, \lor, \land, \neg$ and $=$.)
Model theory: Background

Model theoretic programme: Study sets *definable* in a *model*.

- For our purposes, “definable” \iff described by a formula φ using symbols from a fixed language L. (L is always assumed to contain logical connectives $\forall, \exists, \lor, \land, \neg$ and $=$.)

- An L-structure, or *model*, \mathcal{M}, is a set, together with interpretations for all of the formulas in the language L.

Definability in weakly o-minimal structures – p.3/36
Model theory: Background

Model theoretic programme: Study sets definable in a model.

- For our purposes, “definable” \iff described by a formula φ using symbols from a fixed language L. (L is always assumed to contain logical connectives \forall, \exists, \vee, \wedge, \neg and \models.)

- An L-structure, or model, \mathcal{M}, is a set, together with interpretations for all of the formulas in the language L.

- A formula with n variables held free (not quantified out) describes a subset of \mathcal{M}^n.
Model theoretic programme: Study sets \textit{definable} in a \textit{model}.

- For our purposes, “definable” \leftrightarrow described by a \textit{formula} φ using symbols from a fixed language L. (L is always assumed to contain logical connectives \forall, \exists, \lor, \land, \neg and $=$.)

- An L-structure, or \textit{model}, \mathcal{M}, is a set, together with interpretations for all of the formulas in the language L.

- A formula with n variables held free (not quantified out) describes a subset of M^n.

- $Th(\mathcal{M})$ is the collection of \textit{sentences} (formulas with no free variables) satisfied by \mathcal{M}. \mathcal{M} is elementarily equivalent to \mathcal{N}, or $\mathcal{M} \equiv \mathcal{N}$, iff $Th(\mathcal{M}) = Th(\mathcal{N})$.

Definability in weakly o-minimal structures – p.3/36
Model theory: Background

Model theoretic programme: Study sets \textit{definable} in a \textit{model}.

- For our purposes, “definable” \iff described by a \textit{formula} \(\varphi \) using symbols from a fixed language \(L \). (\(L \) is always assumed to contain logical connectives \(\forall, \exists, \vee, \wedge, \neg \) and \(= \).)

- An \(L \)-structure, or \textit{model}, \(\mathcal{M} \), is a set, together with interpretations for all of the formulas in the language \(L \).

- A formula with \(n \) variables held free (not quantified out) describes a subset of \(\mathcal{M}^n \).

- \(Th(\mathcal{M}) \) is the collection of \textit{sentences} (formulas with no free variables) satisfied by \(\mathcal{M} \). \(\mathcal{M} \) is elementarily equivalent to \(\mathcal{N} \), or \(\mathcal{M} \equiv \mathcal{N} \), \iff \(Th(\mathcal{M}) = Th(\mathcal{N}) \).

- Ask: how complex can these definable sets be?
Many mathematical questions can be phrased in terms of a model and a formula.
Model Theory: Background (II)

Many mathematical questions can be phrased in terms of a model and a formula.

Example: “Does \(4x^9 + 2x^2y^2 - y + 1 \) have a root in \(\mathbb{Q} \times \mathbb{Q} \)?”
Many mathematical questions can be phrased in terms of a model and a formula.

Example: “Does $4x^9 + 2x^2y^2 - y + 1$ have a root in $\mathbb{Q} \times \mathbb{Q}$?”

Choose a language as simple as possible: $L = \{+, \cdot, 0, 1\}$
Many mathematical questions can be phrased in terms of a model and a formula.

Example: “Does \(4x^9 + 2x^2y^2 - y + 1\) have a root in \(\mathbb{Q} \times \mathbb{Q}\)’?”

Choose a language as simple as possible: \(L = \{+,, 0, 1\}\)

\(T = Th(\mathbb{Q}, +, \cdot, 0, 1)\)
Many mathematical questions can be phrased in terms of a model and a formula.

Example: “Does $4x^9 + 2x^2y^2 - y + 1$ have a root in $\mathbb{Q} \times \mathbb{Q}$?”

Choose a language as simple as possible: $L = \{+, \cdot, 0, 1\}$

$T = Th(\mathbb{Q}, +, \cdot, 0, 1)$

Question is equivalent to whether $T \models \exists x \exists y \varphi(x, y)$, where

$\varphi(x, y) := \exists x \exists y \varphi(x, y)$, where $\varphi(x, y) := 4x^9 + 2x^2y^2 - y + 1 = 0'$
Model Theory: Background (II)

Many mathematical questions can be phrased in terms of a model and a formula.

Example: “Does $4x^9 + 2x^2y^2 - y + 1$ have a root in $\mathbb{Q} \times \mathbb{Q}$?”

Choose a language as simple as possible: $L = \{+ , \cdot , 0, 1\}$

$T = Th(\mathbb{Q}, +, \cdot, 0, 1)$

Question is equivalent to whether $T \models \exists x \exists y \varphi(x, y)$, where $
\varphi(x, y) := '4x^9 + 2x^2y^2 - y + 1 = 0'$

Can a computer prove all of the theorems of T?
Example: $\mathcal{M}_1 = (\mathbb{C})$, no non-logical symbols

Definable sets of \mathcal{M}_1^1: Not many! All definable sets are finite or cofinite - as simple as possible:

$\varphi(x) := x = 7 \lor x = 15 \lor x = \pi$

Solution set is $\{\pi, 7, 15\}$
Example: $\mathcal{M}_1 = (\mathbb{C})$, no non-logical symbols

Definable sets of \mathcal{M}_1^1: Not many! All definable sets are finite or cofinite - as simple as possible:

$\varphi(x) := x = 7 \vee x = 15 \vee x = \pi$

Solution set is $\{\pi, 7, 15\}$

Example: $\mathcal{M}_2 = (\mathbb{Q}, <)$

Definable sets of \mathcal{M}_2^1: Again, not many! Just finite unions of intervals:

$\psi(x) := x < 5 \land x > 2$

Solution set is simply the rational interval $(2, 5)$
Example: $\mathcal{N} = (\mathbb{N}, +, \cdot, <, 0, 1)$

With more structure, we are sure to have more complexity of definable sets.
Example: $\mathcal{N} = (\mathbb{N}, +, \cdot, <, 0, 1)$

- With more structure, we are sure to have more complexity of definable sets.
- Complexity depends on number of alternating quantifiers.
Example: $\mathcal{N} = (\mathbb{N}, +, \cdot, <, 0, 1)$

- With more structure, we are sure to have more complexity of definable sets.
- Complexity depends on number of alternating quantifiers.
- Simplest definable subsets called *recursive*.
Example: $\mathcal{N} = (\mathbb{N}, +, \cdot, <, 0, 1)$

- With more structure, we are sure to have more complexity of definable sets.
- Complexity depends on number of alternating quantifiers.
- Simplest definable subsets called \textit{recursive}.
- Collection of definable sets arranged into the \textit{arithmetic hierarchy}: still countable, but unwieldy.
Example: $\mathcal{N} = (\mathbb{N}, +, \cdot, <, 0, 1)$

- With more structure, we are sure to have more complexity of definable sets.
- Complexity depends on number of alternating quantifiers.
- Simplest definable subsets called *recursive*.
- Collection of definable sets arranged into the *arithmetic hierarchy*: still countable, but unwieldy.
- Consequence: if one can ‘interpret’ \mathcal{N} in another structure \mathcal{N}', then \mathcal{N}' is just as complicated.
Several types of “minimal” theories: minimal refers to the complexity of definable sets:

- **Strongly minimal model** \mathcal{M}: All definable subsets of \mathcal{M}^1 are finite or cofinite.
Model theory: Definitions

Several types of “minimal” theories: minimal refers to the complexity of definable sets:

- **Strongly minimal model** \mathcal{M}: All definable subsets of M^1 are finite or cofinite.

- **Order-minimal, or o-minimal model** \mathcal{M}: All definable subsets of M^1 are finite unions of intervals (convex sets with both infema and suprema inside M). (Slang: A formula φ only “changes its mind” finitely many times on \mathcal{M}, with definable changing points.)
Several types of “minimal” theories: minimal refers to the complexity of definable sets:

- **Strongly minimal model** \(\mathcal{M} \): All definable subsets of \(M^1 \) are finite or cofinite.

- **Order-minimal, or o-minimal model** \(\mathcal{M} \): All definable subsets of \(M^1 \) are finite unions of intervals (convex sets with both infema and suprema inside \(M \)). (Slang: A formula \(\varphi \) only “changes its mind” finitely many times on \(\mathcal{M} \), with definable changing points.)

- **Weakly o-minimal model** \(\mathcal{M} \): All definable subsets of \(M^1 \) are finite unions of convex sets (not necessarily intervals). (Slang: A formula \(\varphi \) only “changes its mind” finitely many times on \(\mathcal{M} \).)
The strongly minimal case is as good as it gets:

Example: \((\mathbb{C})\) [Easy]
The strongly minimal case is as good as it gets:

- Example: \((\mathbb{C}) \) [Easy]
- Example: \((\mathbb{C}, +, \cdot, 0, 1) \) [Harder] - every definable subset of \(\mathbb{C} \) is the solution set of a polynomial or the complement of such a set.
The strongly minimal case is as good as it gets:

Example: (\mathbb{C}) [Easy]

Example: $(\mathbb{C}, +, \cdot, 0, 1)$ [Harder] - every definable subset of \mathbb{C} is the solution set of a polynomial or the complement of such a set.

Note: This means that adding significant complexity to the language, in particular allowing polynomials of arbitrary degree, adds no complexity to the definable subsets of M.

Definability in weakly o-minimal structures – p.14/36
The strongly minimal case is as good as it gets:

- Example: \((\mathbb{C})\) [Easy]

- Example: \((\mathbb{C}, +, \cdot, 0, 1)\) [Harder] - every definable subset of \(\mathbb{C}\) is the solution set of a polynomial or the complement of such a set.

Note: This means that adding significant complexity to the language, in particular allowing polynomials of arbitrary degree, adds no complexity to the definable subsets of \(M\).

- May discuss a strongly minimal theory, such that every model of the theory is also strongly minimal.
In any infinite linear order without endpoints, strong minimality is not possible (as witnessed by the formula $x > a$ for any a). Hence, whenever a linear ordering is present in the model, o-minimal is the simplest possible case.

Example: \mathbb{Q} considered as a linear order, $(\mathbb{Q}, <)$ (proved via quantifier elimination).
In any infinite linear order without endpoints, strong minimality is not possible (as witnessed by the formula $x > a$ for any a). Hence, whenever a linear ordering is present in the model, o-minimal is the simplest possible case.

- Example: \mathbb{Q} considered as a linear order, $(\mathbb{Q}, <)$ (proved via quantifier elimination).

- Example: \mathbb{Q} considered as a divisible ordered abelian group, $(\mathbb{Q}, +, <, 0)$, is o-minimal (also via quantifier elimination)...
o-minimal models and theories

In any infinite linear order without endpoints, strong minimality is *not* possible (as witnessed by the formula $x > a$ for any a). Hence, whenever a linear ordering is present in the model, o-minimal is the simplest possible case.

- Example: \mathbb{Q} considered as a linear order, $(\mathbb{Q}, <)$ (proved via quantifier elimination).
- Example: \mathbb{Q} considered as a divisible ordered abelian group, $(\mathbb{Q}, +, <, 0)$, is o-minimal (also via quantifier elimination)...
- ... but, $(\mathbb{Q}, +, \cdot, <, 0, 1)$, the ordered field, is *not* o-minimal. In fact, this is the *worst* possible case, as one can define the integers in this structure with a single formula (Robinson 1949).
The main tool in the study of o-minimal structures is the Monotonicity Theorem (Pillay, Steinhorn 1986):

[Consider all linearly ordered models to be densely ordered.] Suppose \(\mathcal{M} \) is o-minimal, and let \(f : M \to M \) be a definable function. Then there is a definable finite partition of \(\text{dom} \, f \) into intervals \(\{U_i : i \leq n\} \) such that for each \(i \), \(f|U_i \) is strictly monotone and continuous.
The main tool in the study of o-minimal structures is the Monotonicity Theorem (Pillay, Steinhorn 1986):

[Consider all linearly ordered models to be densely ordered.] Suppose \mathcal{M} is o-minimal, and let $f : M \to M$ be a definable function. Then there is a definable finite partition of $\text{dom} f$ into intervals $\{U_i : i \leq n\}$ such that for each i, $f|_{U_i}$ is strictly monotone and continuous.
The main tool in the study of o-minimal structures is the Monotonicity Theorem (Pillay, Steinhorn 1986):

[Consider all linearly ordered models to be densely ordered.] Suppose \mathcal{M} is o-minimal, and let $f : M \to M$ be a definable function. Then there is a definable finite partition of $\text{dom} f$ into intervals $\{U_i : i \leq n\}$ such that for each i, $f|U_i$ is strictly monotone and continuous.
Cellular decomposition: (Knight, Pillay, Steinhorn 1986) The idea: Given an o-minimal structure \mathcal{M}, every definable subset of M^n can be broken down into finitely many *cells*, where a cell can be thought of as a “nice” subset of M^n.
Cellular decomposition: (Knight, Pillay, Steinhorn 1986) The idea: Given an o-minimal structure \mathcal{M}, every definable subset of \mathcal{M}^n can be broken down into finitely many cells, where a cell can be thought of as a “nice” subset of \mathcal{M}^n.

[Diagram of a face with shaded regions representing cells.]
Cellular decomposition: (Knight, Pillay, Steinhorn 1986) The idea: Given an o-minimal structure \mathcal{M}, every definable subset of \mathcal{M}^n can be broken down into finitely many cells, where a cell can be thought of as a “nice” subset of \mathcal{M}^n.
o-minimal: main results

Theorem: (Knight, Pillay, Steinhorn 1986) Let \mathcal{M} be o-minimal, and $\mathcal{N} \equiv \mathcal{M}$. Then \mathcal{N} is o-minimal. (Uses cell decomposition): “Every o-minimal model has an o-minimal theory.”

From this fact, the study of o-minimal *models* becomes the study of o-minimal *theories*. Once you know a theory is o-minimal, *cellular decomposition* shows that any such structure is quite manageable in terms of definable sets.
o-minimal: main results

Theorem: (Knight, Pillay, Steinhorn 1986) Let \mathcal{M} be o-minimal, and $\mathcal{N} \equiv \mathcal{M}$. Then \mathcal{N} is o-minimal. (Uses cell decomposition): “Every o-minimal model has an o-minimal theory.”

From this fact, the study of o-minimal models becomes the study of o-minimal theories. Once you know a theory is o-minimal, *cellular decomposition* shows that any such structure is quite manageable in terms of definable sets.

Big Question: Which structures have o-minimal theories?
o-minimal: main results

Theorem: (Knight, Pillay, Steinhorn 1986) Let \mathcal{M} be o-minimal, and $\mathcal{N} \equiv \mathcal{M}$. Then \mathcal{N} is o-minimal. (Uses cell decomposition): “Every o-minimal model has an o-minimal theory.”

- From this fact, the study of o-minimal models becomes the study of o-minimal theories. Once you know a theory is o-minimal, *cellular decomposition* shows that any such structure is quite manageable in terms of definable sets.

- Big Question: Which structures have o-minimal theories?

- Subquestion: $(\mathbb{R}, +, \cdot, <, 0, 1)$, the real field, is o-minimal. Which expansions (by language) of the real field are o-minimal?
Example: Take \((\mathbb{Q}, <)\), the rational line, and add a unary predicate symbol \(P\) to the language. Let \(\mathcal{M}\) be \((\mathbb{Q}, <, P)\), where \(P^\mathcal{M}\) is interpreted as \(\{q \in \mathbb{Q} : -\pi < q < \pi\}\), or \((-\pi, \pi) \cap \mathbb{Q}\).
Example: Take \((\mathbb{Q}, <)\), the rational line, and add a unary predicate symbol \(P\) to the language. Let \(\mathcal{M}\) be \((\mathbb{Q}, <, P)\), where \(P^\mathcal{M}\) is interpreted as \(\{q \in \mathbb{Q} : -\pi < q < \pi\}\), or \((-\pi, \pi) \cap \mathbb{Q}\).
Example: Take \((\mathbb{Q}, <)\), the rational line, and add a unary predicate symbol \(P\) to the language. Let \(\mathcal{M}\) be \((\mathbb{Q}, <, P)\), where \(P^\mathcal{M}\) is interpreted as \(\{q \in \mathbb{Q} : -\pi < q < \pi\}\), or \((-\pi, \pi) \cap \mathbb{Q}\).

The structure seems quite tame - but \(P\) does not define an interval: there is no supremum or infimum in \(\mathbb{Q}\)... hence the structure is \textit{not} o-minimal.
Example: Take \((\mathbb{Q}, <)\), the rational line, and add a unary predicate symbol \(P\) to the language. Let \(\mathcal{M}\) be \((\mathbb{Q}, <, P)\), where \(P^\mathcal{M}\) is interpreted as \(\{q \in \mathbb{Q} : -\pi < q < \pi\}\), or \((-\pi, \pi) \cap \mathbb{Q}\).

The structure seems quite tame - but \(P\) does not define an interval: there is no supremum or infemum in \(\mathbb{Q}\)... hence the structure is not o-minimal.

By a theorem of Poizat, this structure is weakly o-minimal.
Weakly o-minimal structures (II)

Three avenues of study:

- What is true in a weakly o-minimal structure? In particular, which tameness properties are preserved from o-minimal structures?
Three avenues of study:

- What is true in a weakly o-minimal structure? In particular, which tameness properties are preserved from o-minimal structures?
- Which structures are weakly o-minimal?
Weakly o-minimal structures (II)

Three avenues of study:

- What is true in a weakly o-minimal structure? In particular, which tameness properties are preserved from o-minimal structures?
- Which structures are weakly o-minimal?
- Given an o-minimal structure, which of its expansions by language are weakly o-minimal?
Weakly o-minimal structures: Failures

Investigate the possible analogues of o-minimal theories to weakly o-minimal structures:

- Monotonicity fails.
Weakly o-minimal structures: Failures

Investigate the possible analogues of o-minimal theories to weakly o-minimal structures:

- Monotonicity fails.
- Thus, cell decomposition fails.
Weakly o-minimal structures: Failures

Investigate the possible analogues of o-minimal theories to weakly o-minimal structures:

- Monotonicity fails.
- Thus, cell decomposition fails.
- There exist $\mathcal{M} \equiv \mathcal{N}$ with \mathcal{M} weakly o-minimal, and \mathcal{N} not weakly o-minimal. Hence not every weakly o-minimal structure has a weakly o-minimal theory.
Weak monotonicity

A failure of monotonicity:
Let $\mathcal{M} = (\mathbb{Q}_L + (\mathbb{Q} \times \mathbb{Q})_R, <, f)$, where $<$ mimics the lexicographic order on $(\mathbb{Q} \times \mathbb{Q})_R$, and $f : (\mathbb{Q} \times \mathbb{Q})_R \rightarrow \mathbb{Q}_L$ such that $f((p_R, q_R)) = p_L$.
Weak monotonicity

A failure of monotonicity:
Let $\mathcal{M} = (\mathbb{Q}_L + (\mathbb{Q} \times \mathbb{Q})_R, <, f)$, where $<$ mimics the lexicographic order on $(\mathbb{Q} \times \mathbb{Q})_R$, and $f : (\mathbb{Q} \times \mathbb{Q})_R \to \mathbb{Q}_L$ such that $f((p_R, q_R)) = p_L$.
Weak monotonicity

A failure of monotonicity:
Let $\mathcal{M} = (\mathbb{Q}_L + (\mathbb{Q} \times \mathbb{Q})_R, <, f)$, where $<$ mimics the lexicographic order on $(\mathbb{Q} \times \mathbb{Q})_R$, and $f : (\mathbb{Q} \times \mathbb{Q})_R \to \mathbb{Q}_L$ such that $f((p_R, q_R)) = p_L$.

Note that in this case, f is still \textit{locally} constant everywhere, but not globally constant.
Weak monotonicity (II)

Why is the above example still weakly o-minimal?
Why is the above example still weakly o-minimal?

Need the ordered group to be able to compare elements from throughout the structure (allow “y = x”).
Why is the above example still weakly o-minimal?

Need the ordered group to be able to compare elements from throughout the structure (allow \(y = x \)).

Thankfully, this is as bad as it gets.
Weak monotonicity (II)

Why is the above example still weakly o-minimal?

Need the ordered group to be able to compare elements from throughout the structure (allow “\(y = x\)”).

Thankfully, this is as bad as it gets.

Theorem: Let \(\mathcal{M}\) be weakly o-minimal, and \(f: M \to M\) be a definable function. Then there is a definable finite partition of \(\text{dom}(f)\) into convex sets \(U_i\) such that for each \(i\), \(f|U_i\) is continuous and either locally strictly increasing, locally strictly decreasing, or locally constant.
Weak monotonicity (II)

- Why is the above example still weakly o-minimal?
- Need the ordered group to be able to compare elements from throughout the structure (allow “$y = x$”).
- Thankfully, this is as bad as it gets.
- Theorem: Let \mathcal{M} be weakly o-minimal, and $f : M \rightarrow M$ be a definable function. Then there is a definable finite partition of $\text{dom}(f)$ into convex sets U_i such that for each i, $f|U_i$ is continuous and either locally strictly increasing, locally strictly decreasing, or locally constant.
- Weak monotonicity result leads to a version of cell decomposition without continuous boundary functions.
Weak monotonicity (II)

- Why is the above example still weakly o-minimal?
- Need the ordered group to be able to compare elements from throughout the structure (allow “y = x”).
- Thankfully, this is as bad as it gets.
- Theorem: Let \mathcal{M} be weakly o-minimal, and $f : M \to M$ be a definable function. Then there is a definable finite partition of $\text{dom}(f)$ into convex sets U_i such that for each i, $f|U_i$ is continuous and either locally strictly increasing, locally strictly decreasing, or locally constant.

- Weak monotonicity result leads to a version of cell decomposition without continuous boundary functions.
- Still not very useful in establishing tameness of definable sets in higher dimensions.
Weak monotonicity (III)

Definition: A weakly o-minimal structure \mathcal{M} has strong monotonicity iff for every definable function $f : M \rightarrow M$, there is a definable finite partition of $\text{dom}(f)$ into convex sets U_i such that for each i, $f|U_i$ is strictly monotone and continuous.
Weak monotonicity (III)

Definition: A weakly o-minimal structure \mathcal{M} has strong monotonicity iff for every definable function $f : M \rightarrow M$, there is a definable finite partition of $\text{dom}(f)$ into convex sets U_i such that for each i, $f|U_i$ is strictly monotone and continuous.

Strong monotonicity is the best possible analogue for the monotonicity found in o-minimal structures.

Definition: A weakly o-minimal structure \mathcal{M} has strong monotonicity iff for every definable function $f : M \rightarrow M$, there is a definable finite partition of $\text{dom}(f)$ into convex sets U_i such that for each i, $f|U_i$ is strictly monotone and continuous.

Strong monotonicity is the best possible analogue for the monotonicity found in o-minimal structures.

Big question: When do we have strong monotonicity?
A New Approach

Stability

- Stable theories have particularly nice geometries and have simple definable sets.

Simplicity

- More recently, simple theories (a subclass of stable theories) have been studied and have similar geometric properties.
A New Approach

Stability

- *Stable theories* have particularly nice geometries and have simple definable sets.

- Many strongly minimal theories are stable - but ordered structures do not have stable theories.

Simplicity

- More recently, *simple theories* (a subclass of stable theories) have been studied and have similar geometric properties.

- Ordered structures do not have simple theories.
A New Approach

Stability

Stable theories have particularly nice geometries and have simple definable sets.

Many strongly minimal theories are stable - but ordered structures do not have stable theories.

Simplicity

More recently, simple theories (a subclass of stable theories) have been studied and have similar geometric properties.

Ordered structures do not have simple theories.

Is there a parallel concept for ordered structures?
Rosiness

Very recent work gives a parallel concept for ordered structures.
Rosiness

- Very recent work gives a parallel concept for ordered structures.
- Stable \rightarrow simple \rightarrow rosy.
Rosiness

- Very recent work gives a parallel concept for ordered structures.
- Stable \rightarrow simple \rightarrow rosy.
- o-minimal theories are rosy as well.
Rosiness

- Very recent work gives a parallel concept for ordered structures.
- Stable \rightarrow simple \rightarrow rosy.
- o-minimal theories are rosy as well.
- Some weakly o-minimal theories are rosy; some are not.
A New Approach (2)

Rosiness

- Very recent work gives a parallel concept for ordered structures.
- Stable \rightarrow simple \rightarrow rosy.
- o-minimal theories are rosy as well.
- Some weakly o-minimal theories are rosy; some are not.
- The concept is still being tested.
Definition: A cut of a linearly ordered structure \mathcal{M} is a pair of subsets (C, D) such that C, D are convex, $C < D$ and $C \cup D = M$.

If \mathcal{M} is a weakly o-minimal expansion of an ordered field with no valuational cut, then \mathcal{M} satisfies strong monotonicity. (MacPherson, Marker, Steinhorn 2000) In the above case, an analogue of cellular decomposition holds as well. Note: the weaker version of cell decomposition does not guarantee a weakly o-minimal theory.
Definition: A cut of a linearly ordered structure \mathcal{M} is a pair of subsets (C, D) such that C, D are convex, $C < D$ and $C \cup D = M$.

Definition: A cut (C, D) in a model \mathcal{M} is called valutional iff

$$\exists \varepsilon > 0 \forall x \in C \forall y \in D (y - x > \varepsilon)$$
Definition: A cut of a linearly ordered structure \mathcal{M} is a pair of subsets (C, D) such that C, D are convex, $C < D$ and $C \cup D = M$.

Definition: A cut (C, D) in a model \mathcal{M} is called valuational iff

$$\exists \varepsilon > 0 \forall x \in C \forall y \in D (y - x > \varepsilon)$$

If \mathcal{M} is a weakly o-minimal expansion of an ordered field with no valuational cut, then \mathcal{M} satisfies strong monotonicity. (MacPherson, Marker, Steinhorn 2000)
Definition: A cut of a linearly ordered structure \(\mathcal{M} \) is a pair of subsets \((C, D)\) such that \(C, D \) are convex, \(C < D \) and \(C \cup D = \mathcal{M} \).

Definition: A cut \((C, D)\) in a model \(\mathcal{M} \) is called valuational iff

\[\exists \varepsilon > 0 \, \forall x \in C \, \forall y \in D \, (y - x > \varepsilon) \]

If \(\mathcal{M} \) is a weakly o-minimal expansion of an ordered field with no valuational cut, then \(\mathcal{M} \) satisfies strong monotonicity. (MacPherson, Marker, Steinhorn 2000)

In the above case, an analogue of cellular decomposition holds as well.
Definition: A cut of a linearly ordered structure \(\mathcal{M} \) is a pair of subsets \((C, D)\) such that \(C, D\) are convex, \(C < D\) and \(C \cup D = \mathcal{M}\).

Definition: A cut \((C, D)\) in a model \(\mathcal{M} \) is called *valuational* iff

\[
\exists \varepsilon > 0 \forall x \in C \forall y \in D (y - x > \varepsilon)
\]

If \(\mathcal{M} \) is a weakly o-minimal expansion of an ordered field with no valuational cut, then \(\mathcal{M} \) satisfies strong monotonicity. (MacPherson, Marker, Steinhorn 2000)

In the above case, an analogue of cellular decomposition holds as well.

Note: the weaker version of cell decomposition does not guarantee a weakly o-minimal theory.
Goal: find a set of conditions that guarantee strong monotonicity.
The Future

- Goal: find a set of conditions that guarantee strong monotonicity.
- Simpler question: look at structures with weakly o-minimal theories expanding the theory of ordered groups.
The Future

- Goal: find a set of conditions that guarantee strong monotonicity.
- Simpler question: look at structures with weakly o-minimal theories expanding the theory of ordered groups.
- Ask: is there a slight weakening of strong monotonicity that will allow locally constant functions, but still achieve strong monotonicity of decreasing and increasing functions?
The Future

- Goal: find a set of conditions that guarantee strong monotonicity.
- Simpler question: look at structures with weakly o-minimal theories expanding the theory of ordered groups.
- Ask: is there a slight weakening of strong monotonicity that will allow locally constant functions, but still achieve strong monotonicity of decreasing and increasing functions?
- Does rosiness guarantee strong monotonicity?