Definable choice for a class of weakly o-minimal structures

ASL Winter Meeting 2011

Chris Laskowski
University of Maryland

Christopher Shaw*
Columbia College Chicago

January 8, 2011
Background

- O-minimality
- Weakly o-minimal structures
- Definable subgroups
- Pathologies

Nonvaluational structures

- van den Dries test
- Failure of Skolem functions

Valuational structures

- T-convexity

Future work
1. **Background**
 - O-minimality
 - Weakly o-minimal structures
 - Definable subgroups
 - Pathologies

2. **Nonvaluational structures**
 - van den Dries test
 - Failure of Skolem functions

3. **Valuational structures**
 - T-convexity

4. **Future work**
A (densely ordered) structure \((M, <, \ldots)\) is *o-minimal* if every definable subset (with parameters) of \(M^1\) is a finite union of intervals.
A (densely ordered) structure \((\mathcal{M}, <, \ldots)\) is \textit{o-minimal} if every definable subset (with parameters) of \(\mathcal{M}^1\) is a finite union of intervals.

- \textit{Intervals} have endpoints in the structure \(\mathcal{M}\).
A (densely ordered) structure \((\mathcal{M}, <, \ldots)\) is \textit{o-minimal} if every definable subset (with parameters) of \(\mathcal{M}^1\) is a finite union of intervals.

- \textit{Intervals} have endpoints in the structure \(\mathcal{M}\).
- Example: \((\mathbb{R}, +, \cdot, 0, 1, <)\).
A (densely ordered) structure \((\mathcal{M}, <, \ldots)\) is \textit{o-minimal} if every definable subset (with parameters) of \(\mathcal{M}^1\) is a finite union of intervals.

- \textit{Intervals} have endpoints in the structure \(\mathcal{M}\).
- Example: \((\mathbb{R}, +, \cdot, 0, 1, <)\). Definable sets: 0-sets of polynomials [Tarski-Seidenberg, 1930].
A (densely ordered) structure \((\mathcal{M}, <, \ldots)\) is \textit{o-minimal} if every definable subset (with parameters) of \(\mathcal{M}^1\) is a finite union of intervals.

- \textit{Intervals} have endpoints in the structure \(\mathcal{M}\).
- Example: \((\mathbb{R}, +, \cdot, 0, 1, <)\). Definable sets: 0-sets of polynomials [Tarski-Seidenberg, 1930].
- An o-minimal structure has an o-minimal theory [Knight-Pillay-Steinhorn, 1986].
Any o-minimal theory expanding a group has *definable Skolem functions*:
Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$
Skolem functions (1)

Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters),
Skolem functions (1)

Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters), there is a definable function $F_\varphi : \mathcal{M}^n \rightarrow \mathcal{M}$.
Skolem functions (1)

Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters), there is a definable function $F_\varphi : \mathcal{M}^n \to \mathcal{M}$, such that if $\mathcal{M} \models \exists y(\varphi(\bar{b}, y))$, then $\mathcal{M} \models \varphi(\bar{b}, F(\bar{b}))$.
Skolem functions (1)

Any o-minimal theory expanding a group has \textit{definable Skolem functions}:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters), there is a definable function $F_\varphi : \mathcal{M}^n \rightarrow \mathcal{M}$, such that if $\mathcal{M} \models \exists y(\varphi(\bar{b}, y))$, then $\mathcal{M} \models \varphi(\bar{b}, F_\varphi(\bar{b}))$.

- O-minimal structures also have uniform elimination of imaginaries.
Skolem functions (1)

Any o-minimal theory expanding a group has \textit{definable Skolem functions}:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters), there is a definable function $F_{\varphi} : \mathcal{M}^n \rightarrow \mathcal{M}$, such that if $\mathcal{M} \models \exists y(\varphi(\bar{b}, y))$, then $\mathcal{M} \models \varphi(\bar{b}, F(\bar{b}))$.

- O-minimal structures also have uniform elimination of imaginaries: every definable equivalence relation of \mathcal{M}^n has a uniformly definable set of class representatives.
Skolem functions (1)

Any o-minimal theory expanding a group has *definable Skolem functions*:

- Given a model \mathcal{M} and an \mathcal{L}-formula $\varphi(\bar{x}, y)$ (the \bar{x} act as parameters), there is a definable function $F_\varphi : \mathcal{M}^n \to \mathcal{M}$, such that if $\mathcal{M} \models \exists y(\varphi(\bar{b}, y))$, then $\mathcal{M} \models \varphi(\bar{b}, F(\bar{b}))$.

- O-minimal structures also have uniform elimination of imaginaries: every definable equivalence relation of M^n has a uniformly definable set of class representatives.

- “Definable choice” [van den Dries, 1998]
Skolem functions (2)

Example

[Diagram of four quadrants with red boxes indicating examples]
Skolem functions (2)

Example
Skolem functions (2)

Example
Skolem functions (2)

Example
Skolem functions (2)

Example

[Diagram showing a cross-section with points and lines]
1 Background
 - O-minimality
 - Weakly o-minimal structures
 - Definable subgroups
 - Pathologies

2 Nonvaluational structures
 - van den Dries test
 - Failure of Skolem functions

3 Valuational structures
 - T-convexity

4 Future work
Definition: Weakly o-minimal

An ordered structure \((M, <, \ldots)\) is \textit{weakly o-minimal} if every definable subset of \(M^1\) is a finite union of \textit{convex sets}.
Definition: Weakly o-minimal

An ordered structure \((\mathcal{M}, <, \ldots)\) is **weakly o-minimal** if every definable subset of \(\mathcal{M}^1\) is a finite union of **convex sets**.

Observations:

- Convex sets needn’t have endpoints in \(\mathcal{M}\).
Definition: Weakly o-minimal

An ordered structure \((\mathcal{M}, <, \ldots)\) is \textit{weakly o-minimal} if every definable subset of \(\mathcal{M}^1\) is a finite union of \textit{convex sets}.

Observations:

- Convex sets needn’t have endpoints in \(\mathcal{M}\).
- Any o-minimal structure is weakly o-minimal.
An ordered structure \((\mathcal{M}, <, \ldots)\) is weakly o-minimal if every definable subset of \(\mathcal{M}^1\) is a finite union of convex sets.

Observations:

- Convex sets needn’t have endpoints in \(\mathcal{M}\).
- Any o-minimal structure is weakly o-minimal.
- Any weakly o-minimal structure which is Dedekind complete is also o-minimal.
Definition: Weakly o-minimal

An ordered structure \((\mathcal{M}, <, \ldots)\) is *weakly o-minimal* if every definable subset of \(\mathcal{M}^1\) is a finite union of *convex sets*.

Observations:
- Convex sets needn’t have endpoints in \(\mathcal{M}\).
- Any o-minimal structure is weakly o-minimal.
- Any weakly o-minimal structure which is Dedekind complete is also o-minimal.
- Thus, any weakly o-minimal structure with universe \(\mathbb{R}\) is o-minimal.
Since \(\pi \not\in \mathbb{Q} \), the set \(\{ x \in \mathbb{Q} : -\pi < x < \pi \} \) is convex in \(\mathbb{Q} \), but not an interval.
Since \(\pi \notin \mathbb{Q} \), the set \(\{ x \in \mathbb{Q} : -\pi < x < \pi \} \) is convex in \(\mathbb{Q} \), but not an interval.
Since $\pi \notin \mathbb{Q}$, the set $\{x \in \mathbb{Q} : -\pi < x < \pi\}$ is convex in \mathbb{Q}, but not an interval.

$\mathcal{M}_1 = (\mathbb{Q}, <, +, P)$, where $P^{\mathcal{M}_1} = \{x \in \mathbb{Q} : -\pi < x < \pi\}$.
Since $\pi \not\in \mathbb{Q}$, the set $\{x \in \mathbb{Q} : -\pi < x < \pi\}$ is convex in \mathbb{Q}, but not an interval.

$\mathcal{M}_1 = (\mathbb{Q}, <, +, P)$, where $P^{\mathcal{M}_1} = \{x \in \mathbb{Q} : -\pi < x < \pi\}$.

$\mathcal{M}_2 = (\mathbb{R}^*, <, +, \cdot, U)$, where \mathbb{R}^* is a proper end extension of \mathbb{R}, and $U^{\mathcal{M}_2}$ is the convex hull of \mathbb{R} in \mathbb{R}^*.
Since $\pi \notin \mathbb{Q}$, the set $\{x \in \mathbb{Q} : -\pi < x < \pi\}$ is convex in \mathbb{Q}, but not an interval.

- $\mathcal{M}_1 = (\mathbb{Q}, <, +, P)$, where $P^{\mathcal{M}_1} = \{x \in \mathbb{Q} : -\pi < x < \pi\}$.
- $\mathcal{M}_2 = (\mathbb{R}^*, <, +, \cdot, U)$, where \mathbb{R}^* is a proper end extension of \mathbb{R}, and $U^{\mathcal{M}_2}$ is the convex hull of \mathbb{R} in \mathbb{R}^*.
- \mathcal{M}_1 and \mathcal{M}_2: two main paradigms we explore in this talk.
Theorem [Poizat, 1998]

Let $\mathcal{M} = (M, <, \ldots)$ be o-minimal, and let \mathcal{U} be a set of unary predicate symbols, and $L' = L \cup \mathcal{U}$. Let \mathcal{M}' be the expanded L'-structure $(M, <, \mathcal{U}, \ldots)$, with each $U \in \mathcal{U}$ interpreted by a convex set. Then \mathcal{M}' is weakly o-minimal.
A note on obtaining weakly o-minimal structures

Theorem [Poizat, 1998]

Let $\mathcal{M} = (M, <, \ldots)$ be o-minimal, and let \mathcal{U} be a set of unary predicate symbols, and $L' = L \cup \mathcal{U}$. Let \mathcal{M}' be the expanded L'-structure $(M, <, \mathcal{U}, \ldots)$, with each $U \in \mathcal{U}$ interpreted by a convex set. Then \mathcal{M}' is weakly o-minimal.

- Baizhanov (2001) proved this in more generality, allowing \mathcal{M} itself to be weakly o-minimal.
Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?
Questions

- Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?
- Focus on structures expanding a group.
Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?

Focus on structures expanding a group.

How much of the simplicity of structure of o-minimality can be preserved in the weakly o-minimal case?
Questions

- Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?
- Focus on structures expanding a group.
- How much of the simplicity of structure of o-minimality can be preserved in the weakly o-minimal case?
 - Monotonicity? Cellular decomposition?
Some weakly o-minimal structures are “nicer” than others. What are the defining characteristics that make this so?

Focus on structures expanding a group.

How much of the simplicity of structure of o-minimality can be preserved in the weakly o-minimal case?

- Monotonicity?
- Cellular decomposition?
- Definable choice?
1 Background
 - O-minimality
 - Weakly o-minimal structures
 - Definable subgroups
 - Pathologies

2 Nonvaluational structures
 - van den Dries test
 - Failure of Skolem functions

3 Valuational structures
 - T-convexity

4 Future work

Chris Laskowski & Christopher Shaw
Definable choice in weakly o-minimal structures
An o-minimal group has no proper definable subgroup.
General facts

- An o-minimal group has no proper definable subgroup.
- More generally, there are no definable convex equivalence relations with infinitely many infinite classes.
General facts

- An o-minimal group has no proper definable subgroup.
- More generally, there are no definable convex equivalence relations with infinitely many infinite classes.
- Not true in general in the weakly o-minimal case:
General facts

- An o-minimal group has no proper definable subgroup.
- More generally, there are no definable convex equivalence relations with infinitely many infinite classes.
- Not true in general in the weakly o-minimal case:
 - Let \mathbb{R}^* be a nonarchimedean end extension of \mathbb{R}, and $\mathcal{M} = (\mathbb{R}^*, +, <, 0, U)$, where $U^\mathcal{M}$ is interpreted as the convex hull of \mathbb{R} in \mathbb{R}^*.
General facts

- An o-minimal group has no proper definable subgroup.
- More generally, there are no definable convex equivalence relations with infinitely many infinite classes.
- Not true in general in the weakly o-minimal case:
 - Let \mathbb{R}^* be a nonarchimedean end extension of \mathbb{R}, and $\mathcal{M} = (\mathbb{R}^*, +, <, 0, U)$, where $U^\mathcal{M}$ is interpreted as the convex hull of \mathbb{R} in \mathbb{R}^*.
 - Weakly o-minimal, but $U(\mathcal{M})$ defines a proper subgroup.
General facts

- An o-minimal group has no proper definable subgroup.
- More generally, there are no definable convex equivalence relations with infinitely many infinite classes.
- Not true in general in the weakly o-minimal case:
 - Let \mathbb{R}^* be a nonarchimedean end extension of \mathbb{R}, and $\mathcal{M} = (\mathbb{R}^*, +, <, 0, U)$, where $U^\mathcal{M}$ is interpreted as the convex hull of \mathbb{R} in \mathbb{R}^*.
 - Weakly o-minimal, but $U(\mathcal{M})$ defines a proper subgroup.
- Any definable subgroup is convex \Rightarrow weakly o-minimal groups satisfy DOAG.
Valuational: definition and examples

A cut $\langle C, D \rangle$ of \mathcal{M}
A cut $\langle C, D \rangle$ of \mathcal{M} is *valuational* if there is $\varepsilon > 0$ such that $C + \varepsilon = C$.

A weakly o-minimal group \mathcal{M} is valuational if \mathcal{M} has a definable valuational cut; equivalently, \mathcal{M} has a definable proper subgroup.
Valuational: definition and examples

A cut \(\langle C, D \rangle \) of \(\mathcal{M} \) is *valuational* if there is \(\varepsilon > 0 \) such that \(C + \varepsilon = C \).
Valuational: definition and examples

A cut $\langle C, D \rangle$ of \mathcal{M} is *valuational* if there is $\varepsilon > 0$ such that $C + \varepsilon = C$.

![Diagram showing a cut $\langle C, D \rangle$ in \mathcal{M} with points labeled 0, ε, g, $g+\varepsilon$, and D.]
Valuational: definition and examples

A cut \(\langle C, D \rangle \) of \(\mathcal{M} \) is *valuational* if there is \(\varepsilon > 0 \) such that \(C + \varepsilon = C \).

A weakly o-minimal group \(\mathcal{M} \) is *valuational* if \(\mathcal{M} \) has a definable valuational cut.
A cut \(\langle C, D \rangle \) of \(\mathcal{M} \) is \textit{valuational} if there is \(\varepsilon > 0 \) such that \(C + \varepsilon = C \).

A weakly o-minimal group \(M \) is \textit{valuational} if \(M \) has a definable valuational cut; equivalently, \(M \) has a definable proper subgroup.
A cut $\langle C, D \rangle$ of \mathcal{M} is \textit{valuational} if there is $\varepsilon > 0$ such that $C + \varepsilon = C$.

A weakly o-minimal group \mathcal{M} is \textit{valuational} if \mathcal{M} has a definable valuational cut; equivalently, \mathcal{M} has a definable proper subgroup.

- By the definition, the rationals with convex predicate for π is nonvaluational.
Valuational: definition and examples

A cut $\langle C, D \rangle$ of \mathcal{M} is \textit{valuational} if there is $\varepsilon > 0$ such that $C + \varepsilon = C$.

A weakly o-minimal group \mathcal{M} is \textit{valuational} if \mathcal{M} has a definable valuational cut; equivalently, \mathcal{M} has a definable proper subgroup.

- By the definition, the rationals with convex predicate for π is nonvaluational.
- By the subgroup characterization, the proper end-extension of \mathbb{R} is valuational.
1 Background
 - O-minimality
 - Weakly o-minimal structures
 - Definable subgroups
 - Pathologies

2 Nonvaluational structures
 - van den Dries test
 - Failure of Skolem functions

3 Valuational structures
 - T-convexity

4 Future work
There is no hope of a tame cellular decomposition. In \((\mathbb{R}^*,+,<,U)\), define \(X \subseteq (\mathbb{R}^*)^2\) by the formula \(U(y-x)\).
Cells in valuational structures

There is no hope of a tame cellular decomposition. In $(\mathbb{R}^*, +, <, U)$, define $X \subseteq (\mathbb{R}^*)^2$ by the formula $U(y - x)$.
There is no hope of a tame cellular decomposition. In $(\mathbb{R}^*, +, <, U)$, define $X \subseteq (\mathbb{R}^*)^2$ by the formula $U(y - x)$.
Cells in valuational structures

There is no hope of a tame cellular decomposition. In \((\mathbb{R}^*, +, <, U)\), define \(X \subseteq (\mathbb{R}^*)^2\) by the formula \(U(y - x)\).
Skolem functions

In a weakly o-minimal structure, we have definable sets without endpoints in the structure. Harder to name midpoints.

In a valuational structure, there isn't even a reasonable definition of midpoint.
Skolem functions

- In a weakly o-minimal structure, we have definable sets without endpoints in the structure.
In a weakly o-minimal structure, we have definable sets without endpoints in the structure.

Harder to name midpoints.
In a weakly o-minimal structure, we have definable sets without endpoints in the structure.

Harder to name midpoints.

In a valuational structure, there isn’t even a reasonable definition of midpoint.
Calm at sea

[McPherson-Marker-Steinhorn, 2000]
Calm at sea

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:
Calm at sea

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:

- \mathcal{F} is real closed;
Calm at sea

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:

- \mathcal{F} is real closed;
- \mathcal{F} satisfies a ‘nice’ version of monotonicity;
Calm at sea

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:

- \mathcal{F} is real closed;
- \mathcal{F} satisfies a ‘nice’ version of monotonicity;
- \mathcal{F} has uniform finiteness and a ‘nice’ cellular decomposition;
Calm at sea

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:

- \mathcal{F} is real closed;
- \mathcal{F} satisfies a ‘nice’ version of monotonicity;
- \mathcal{F} has uniform finiteness and a ‘nice’ cellular decomposition;
- \mathcal{F} has a weakly o-minimal theory.

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational group G:

- G has a strong monotonicity;
- G has a strong cellular decomposition and uniform finiteness;
- G has a weakly o-minimal theory.
Calm at sea

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:

- \mathcal{F} is real closed;
- \mathcal{F} satisfies a ‘nice’ version of monotonicity;
- \mathcal{F} has uniform finiteness and a ‘nice’ cellular decomposition;
- \mathcal{F} has a weakly o-minimal theory.

[Wencel, 2010]
Calm at sea

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:
- \mathcal{F} is real closed;
- \mathcal{F} satisfies a ‘nice’ version of monotonicity;
- \mathcal{F} has uniform finiteness and a ‘nice’ cellular decomposition;
- \mathcal{F} has a weakly o-minimal theory.

[Wencel, 2010]
For a weakly o-minimal nonvaluational group \mathcal{G}:
Calm at sea

[McPherson-Marker-Steinhorn, 2000]
For a weakly o-minimal nonvaluational field \mathcal{F}:

- \mathcal{F} is real closed;
- \mathcal{F} satisfies a ‘nice’ version of monotonicity;
- \mathcal{F} has uniform finiteness and a ‘nice’ cellular decomposition;
- \mathcal{F} has a weakly o-minimal theory.

[Wencel, 2010]
For a weakly o-minimal nonvaluational group \mathcal{G}:

- \mathcal{G} has a strong monotonicity;
- \mathcal{G} has a strong cellular decomposition and uniform finiteness;
- \mathcal{G} has a weakly o-minimal theory.
1. Background
 - O-minimality
 - Weakly o-minimal structures
 - Definable subgroups
 - Pathologies

2. Nonvaluational structures
 - van den Dries test
 - Failure of Skolem functions

3. Valuational structures
 - T-convexity

4. Future work

Chris Laskowski & Christopher Shaw
Definable choice in weakly o-minimal structures
Theorem [van den Dries 1984]

If T admits q.e., then TFAE:

- T has definable Skolem functions.
- Each model $M \models T$ has an extension $M' \models T$ which is algebraic over M and rigid over M.

Troublesome for the nonvaluational case: "M is nonvaluational" is an $\exists \forall$-sentence.
Theorem [van den Dries 1984]

If T admits q.e., then TFAE:

1. T has definable Skolem functions.
2. Each model $M|_T$ has an extension $M'|_T$ which is algebraic over M and rigid over M.

Troublesome for the nonvaluational case: "M is nonvaluational" is an $\exists\forall$-sentence.
Theorem [van den Dries 1984]

If T admits $q.e.$, then TFAE:

- T has definable Skolem functions.
Theorem [van den Dries 1984]

If T admits q.e., then TFAE:

- T has definable Skolem functions.
- Each model $M \models T$ has an extension $\overline{M} \models T$ which is algebraic over M and rigid over M.
Theorem [van den Dries 1984]

If T admits q.e., then TFAE:

- T has definable Skolem functions.
- Each model $\mathcal{M} \models T$ has an extension $\overline{\mathcal{M}} \models T$ which is algebraic over \mathcal{M} and rigid over \mathcal{M}.

Troublesome for the nonvaluational case: “\mathcal{M} is nonvaluational” is an $\exists \forall$-sentence.
Taking on water

\[M = (\mathbb{Q}^3, +, <, U), \text{ where } <^M \text{ is lexicographic, } +^M \text{ is componentwise addition in } \mathbb{Q}, \text{ and } U^M = \{ \bar{x} \in \mathbb{Q}^3 : \bar{x} < (1, 1, \pi) \} = \{ (n, p, q) : n \leq 1, p \leq 1, q < \pi \}. \]
Taking on water

- $\mathcal{M} = (\mathbb{Q}^3, +, <, U)$, where $<^\mathcal{M}$ is lexicographic, $+^\mathcal{M}$ is componentwise addition in \mathbb{Q}, and $U^\mathcal{M} = \{\bar{x} \in \mathbb{Q}^3 : \bar{x} < (1, 1, \pi)\} = \{(n, p, q) : n \leq 1, p \leq 1, q < \pi\}$.

- Weakly o-minimal since $(\mathbb{Q}^3, +, <) \models DOAG$ and $U^\mathcal{M}$ is convex.
Taking on water

- $\mathcal{M} = (\mathbb{Q}^3, +, <, U)$, where $<_\mathcal{M}$ is lexicographic, $+_\mathcal{M}$ is component-wise addition in \mathbb{Q}, and $U^{\mathcal{M}} = \{ \bar{x} \in \mathbb{Q}^3 : \bar{x} < (1, 1, \pi) \} = \{ (n, p, q) : n \leq 1, p \leq 1, q < \pi \}$.
- Weakly o-minimal since $(\mathbb{Q}^3, +, <) \models DOAG$ and $U^{\mathcal{M}}$ is convex.
- Nonvaluational since every ‘small’ element is some $(0, 0, q)$, and $\{q_1\} \times \{q_2\} \times \mathbb{Q}$ is nonvaluational.
\[M = (\mathbb{Q}^3, +, <, U), \text{ where } <^M \text{ is lexicographic, } +^M \text{ is componentwise addition in } \mathbb{Q}, \text{ and } U^M = \{ \bar{x} \in \mathbb{Q}^3 : \bar{x} < (1, 1, \pi) \} = \{ (n, p, q) : n \leq 1, p \leq 1, q < \pi \}. \]

Weakly o-minimal since \((\mathbb{Q}^3, +, <) \models DOAG\) and \(U^M\) is convex.

Nonvaluational since every ‘small’ element is some \((0, 0, q)\), and \(\{q_1\} \times \{q_2\} \times \mathbb{Q}\) is nonvaluational.

\(M'\) is the substructure generated by \(+^M\) with universe \(\{(n, p, q) : p = 0\}...\)
Taking on water

- $\mathcal{M} = (\mathbb{Q}^3, +, <, U)$, where $<^\mathcal{M}$ is lexicographic, $+^\mathcal{M}$ is componentwise addition in \mathbb{Q}, and $U^\mathcal{M} = \{\bar{x} \in \mathbb{Q}^3 : \bar{x} < (1, 1, \pi)\} = \{(n, p, q) : n \leq 1, p \leq 1, q < \pi\}$.

- Weakly o-minimal since $(\mathbb{Q}^3, +, <) \models DOAG$ and $U^\mathcal{M}$ is convex.

- Nonvaluational since every ‘small’ element is some $(0, 0, q)$, and $\{q_1\} \times \{q_2\} \times \mathbb{Q}$ is nonvaluational.

- \mathcal{M}' is the substructure generated by $+^\mathcal{M}$ with universe $\{(n, p, q) : p = 0\}$... which is valuational.
\(\mathcal{M} = (\mathbb{Q}^3, +, <, U) \), where \(<^\mathcal{M}\) is lexicographic, \(+^\mathcal{M}\) is componentwise addition in \(\mathbb{Q}\), and \(U^\mathcal{M} = \{ \bar{x} \in \mathbb{Q}^3 : \bar{x} < (1, 1, \pi) \} = \{(n, p, q) : n \leq 1, p \leq 1, q < \pi \} \).

Weakly o-minimal since \((\mathbb{Q}^3, +, <) \models DOAG\) and \(U^\mathcal{M}\) is convex.

Nonvaluational since every ‘small’ element is some \((0, 0, q)\), and \(\{q_1\} \times \{q_2\} \times \mathbb{Q}\) is nonvaluational.

\(\mathcal{M}'\) is the substructure generated by \(+^\mathcal{M}\) with universe \(\{(n, p, q) : p = 0\}\)... which is valuational.

\(\mathcal{M}''\) is the substructure with universe \(\{(n, p, q) : q = 0\}\). Then \(U^\mathcal{M}''\) is an interval...
\[\mathcal{M} = (\mathbb{Q}^3, +, <, U), \text{ where } <^\mathcal{M} \text{ is lexicographic, } +^\mathcal{M} \text{ is componentwise addition in } \mathbb{Q}, \text{ and } U^\mathcal{M} = \{ \bar{x} \in \mathbb{Q}^3 : \bar{x} < (1, 1, \pi) \} = \{ (n, p, q) : n \leq 1, p \leq 1, q < \pi \}. \]

Weakly o-minimal since \((\mathbb{Q}^3, +, <) \models DOAG\) and \(U^\mathcal{M}\) is convex.

Nonvaluational since every ‘small’ element is some \((0, 0, q)\), and \(\{q_1\} \times \{q_2\} \times \mathbb{Q}\) is nonvaluational.

\(\mathcal{M}'\) is the substructure generated by \(+^\mathcal{M}\) with universe \(\{(n, p, q) : p = 0\}\) which is valuational.

\(\mathcal{M}''\) is the substructure with universe \(\{(n, p, q) : q = 0\}\). Then \(U^\mathcal{M}''\) is an interval... so \(\mathcal{M}''\) is o-minimal.
Background

- O-minimality
- Weakly o-minimal structures
- Definable subgroups
- Pathologies

Nonvaluational structures

- van den Dries test
- Failure of Skolem functions

Valuational structures

- \(T\)-convexity

Future work

Chris Laskowski & Christopher Shaw
Definable choice in weakly o-minimal structures
Example: \((\mathbb{Q}, +, −, <, P, \lambda q)_{q \in \mathbb{Q}}\)
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has q.e., so we can say what the definable functions are.
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has q.e., so we can say what the definable functions are.

- Every definable function is piecewise linear.
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has q.e., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has q.e., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \rightarrow \mathbb{Q}\) such that \(x < f(x) < \pi\).
Example: \((\mathbb{Q}, +, −, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has q.e., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has q.e., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
Example: $(\mathbb{Q}, +, −, <, P, \lambda_q)_{q \in \mathbb{Q}}$. Has q.e., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- $\varphi(x, y) = P(x) \land P(y) \land x < y$.
- $F : \mathbb{Q} \to \mathbb{Q}$ such that $x < f(x) < \pi$.
Example: \((\mathbb{Q}, +, −, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has q.e., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has q.e., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \to \mathbb{Q}\) such that \(x < f(x) < \pi\).
Example: \((\mathbb{Q}, +, -, <, P, \lambda_q)_{q \in \mathbb{Q}}\). Has q.e., so we can say what the definable functions are.

- Every definable function is piecewise linear.
- \(\varphi(x, y) = P(x) \land P(y) \land x < y\).
- \(F : \mathbb{Q} \rightarrow \mathbb{Q}\) such that \(x < f(x) < \pi\).
Generalizing the nonvaluational result

Theorem [L-S, 2008]

\((\mathcal{M}, +, <, \ldots)\) o-minimal, and \(U\) a new nonvaluational left-closed convex subset. Then \((\mathcal{M}, U)\) does not have definable Skolem functions.
Generalizing the nonvaluational result

Theorem [L-S, 2008]

$(\mathcal{M}, +, <, \ldots)$ o-minimal, and U a new nonvaluational left-closed convex subset. Then (\mathcal{M}, U) does not have definable Skolem functions.

Proof (Outline):
Generalizing the nonvaluational result

Theorem [L-S, 2008]

$(\mathcal{M}, +, <, \ldots)$ o-minimal, and U a new nonvaluational left-closed convex subset. Then (\mathcal{M}, U) does not have definable Skolem functions.

Proof (Outline):
- \mathcal{M} o-minimal, U a new convex subset. Define $tp(\sup U/\mathcal{M}) = $ the type in \mathcal{M} of the supremum of U.

Chris Laskowski & Christopher Shaw
Definable choice in weakly o-minimal structures
Generalizing the nonvaluational result

Theorem [L-S, 2008]

$(\mathcal{M}, +, <, \ldots)$ o-minimal, and U a new nonvaluational left-closed convex subset. Then (\mathcal{M}, U) does not have definable Skolem functions.

Proof (Outline):

- \mathcal{M} o-minimal, U a new convex subset. Define $tp(\text{sup}U/M) =$ the type in \mathcal{M} of the supremum of U.
- Given \mathcal{M} as above, let $b \in \mathcal{C}$ realize $tp(\text{sup}U/M)$.

Definable choice in weakly o-minimal structures
Generalizing the nonvaluational result

Theorem [L-S, 2008]

$(\mathcal{M}, +, <, \ldots)$ o-minimal, and U a new nonvaluational left-closed convex subset. Then (\mathcal{M}, U) does not have definable Skolem functions.

Proof (Outline):

- \mathcal{M} o-minimal, U a new convex subset. Define $tp(\text{sup}U/M) = \text{the type in } \mathcal{M} \text{ of the supremum of } U$.
- Given \mathcal{M} as above, let $b \in \mathcal{C}$ realize $tp(\text{sup}U/M)$.
- O-minimal structures have prime models over sets; let $\mathcal{N} = pr(\mathcal{M} \cup \{b\})$.
Generalizing the nonvaluational result

Theorem [L-S, 2008]

\((\mathcal{M}, +, <, \ldots)\) o-minimal, and \(U\) a new nonvaluational left-closed convex subset. Then \((\mathcal{M}, U)\) does not have definable Skolem functions.

Proof (Outline):

- \(\mathcal{M}\) o-minimal, \(U\) a new convex subset. Define \(tp(\sup U/M)\) = the type in \(\mathcal{M}\) of the supremum of \(U\).
- Given \(\mathcal{M}\) as above, let \(b \in \mathcal{C}\) realize \(tp(\sup U/M)\).
- O-minimal structures have prime models over sets; let \(\mathcal{N} = pr(\mathcal{M} \cup \{b\})\).
- **Lemma:** \(\mathcal{M}\) is dense in \(\mathcal{N}\) if and only if \(U\) is nonvaluational.
Generalizing the nonvaluational result

Theorem [L-S, 2008]

$$(\mathcal{M}, +, <, \ldots)$$ o-minimal, and U a new nonvaluational left-closed convex subset. Then (\mathcal{M}, U) does not have definable Skolem functions.

Proof (Outline):

- \mathcal{M} o-minimal, U a new convex subset. Define $tp(\text{sup } U/M) = \text{ the type in } \mathcal{M} \text{ of the supremum of } U$.
- Given \mathcal{M} as above, let $b \in \mathbb{C}$ realize $tp(\text{sup } U/M)$.
- O-minimal structures have prime models over sets; let $\mathcal{N} = \text{pr}(\mathcal{M} \cup \{b\})$.
- **Lemma**: \mathcal{M} is dense in \mathcal{N} if and only if U is nonvaluational.
- **Theorem** [van den Dries, 1998]: Every $(\mathcal{N}, \mathcal{M})$-definable function $F : \mathcal{M} \rightarrow \mathcal{M}$ is piecewise \mathcal{M}-definable.
1 Background
 - O-minimality
 - Weakly o-minimal structures
 - Definable subgroups
 - Pathologies

2 Nonvaluational structures
 - van den Dries test
 - Failure of Skolem functions

3 Valuational structures
 - T-convexity

4 Future work
Definition of T-convexity

Fix T, an o-minimal expansion of a ring; let $\mathcal{M} \models T$. A subset $V \subset M$ is T-convex if V is convex, and for any 0-definable continuous total function $F : \mathcal{M} \to \mathcal{M}$, $F(V) \subseteq V$.

T-convex is the theory of such a pair (\mathcal{M}, V). This is valuational weakly o-minimal.

Theorem [van den Dries-Lewenberg, 1995]
If T eliminates quantifiers and is universally axiomatizable, then T-convex eliminates quantifiers and is complete.

Corollary [van den Dries, 1997]
Add a new constant c to the language; interpret c by an element outside of V. Then T-convex, c has definable Skolem functions.
Fix T, an o-minimal expansion of a ring; let $\mathcal{M} \models T$. A subset $V \subseteq M$ is T-convex if V is convex, and for any 0-definable continuous total function $F : \mathcal{M} \rightarrow \mathcal{M}$, $F(V) \subseteq V$. T_{convex} is the theory of such a pair (\mathcal{M}, V).
Definition of T-convexity

Fix T, an o-minimal expansion of a ring; let $\mathcal{M} \models T$. A subset $V \subseteq M$ is T-convex if V is convex, and for any 0-definable continuous total function $F : \mathcal{M} \to \mathcal{M}$, $F(V) \subseteq V$. T_{convex} is the theory of such a pair (\mathcal{M}, V)... which is valuational weakly o-minimal.
Definition of T-convexity

Fix T, an o-minimal expansion of a ring; let $\mathcal{M} \models T$. A subset $V \subseteq M$ is T-convex if V is convex, and for any 0-definable continuous total function $F : \mathcal{M} \to \mathcal{M}$, $F(V) \subseteq V$. T_{convex} is the theory of such a pair (\mathcal{M}, V)... which is valuational weakly o-minimal.

Theorem [van den Dries-Lewenberg, 1995]

If T eliminates quantifiers and is universally axiomatizable, then T_{convex} eliminates quantifiers and is complete.
Definition of \(T \)-convexity

Fix \(T \), an o-minimal expansion of a ring; let \(\mathcal{M} \models T \). A subset \(V \subseteq M \) is \(T \)-convex if \(V \) is convex, and for any 0-definable continuous total function \(F : \mathcal{M} \to \mathcal{M}, F(V) \subseteq V \). \(T_{\text{convex}} \) is the theory of such a pair \((\mathcal{M}, V)\)... which is valuational weakly o-minimal.

Theorem [van den Dries-Lewenberg, 1995]

If \(T \) eliminates quantifiers and is universally axiomatizable, then \(T_{\text{convex}} \) eliminates quantifiers and is complete.

Corollary [van den Dries, 1997]

Add a new constant \(c \) to the language; interpret \(c \) by an element outside of \(V \). Then \(T_{\text{convex},c} \) has definable Skolem functions.
A sense in which valuational structures are T-convex

For $V \subseteq M$ a convex subset, say that a 0-definable function $G : M \to M$ is V-fast if there is $\varepsilon \in V$ with $G(\varepsilon) \in V$ and $a \in V$ such that $G(a) \notin V$.
A sense in which valuational structures are T-convex

For $V \subseteq M$ a convex subset, say that a 0-definable function $G : M \to M$ is V-fast if there is $\varepsilon \in V$ with $G(\varepsilon) \in V$ and $a \in V$ such that $G(a) \notin V$.

V-fast functions are natural and intuitive witnesses to the failure of T-convexity for the structure (M, V).

Theorem [L-S, 2010]: Let M be an o-minimal expansion of a ring, and $V \subseteq M$ be properly convex such that $\text{acl}(\emptyset) \subseteq V$. If there is a V-fast 0-definable continuous total function $G : M \to M$, then V defines a nonvaluational cut.

Proof uses Marker's analysis of types in o-minimal structures (1986).
A sense in which valuational structures are T-convex

For $V \subseteq \mathcal{M}$ a convex subset, say that a 0-definable function $G : M \to M$ is V-fast if there is $\varepsilon \in V$ with $G(\varepsilon) \in V$ and $a \in V$ such that $G(a) \notin V$.

V-fast functions are natural and intuitive witnesses to the failure of T-convexity for the structure (\mathcal{M}, V).

Theorem [L-S, 2010]:

Let \mathcal{M} be an o-minimal expansion of a ring, and $V \subseteq M$ be properly convex such that $\text{acl}(\emptyset) \subseteq V$. If there is a V-fast 0-definable continuous total function $G : M \to M$, then V defines a nonvaluational cut.
For $V \subseteq M$ a convex subset, say that a 0-definable function $G : M \to M$ is V-fast if there is $\varepsilon \in V$ with $G(\varepsilon) \in V$ and $a \in V$ such that $G(a) \notin V$.

V-fast functions are natural and intuitive witnesses to the failure of T-convexity for the structure (M, V).

Theorem [L-S, 2010]:

Let M be an o-minimal expansion of a ring, and $V \subseteq M$ be properly convex such that $\text{acl}(\emptyset) \subseteq V$. If there is a V-fast 0-definable continuous total function $G : M \to M$, then V defines a nonvaluational cut.

Proof uses Marker’s analysis of types in o-minimal structures (1986).
Let \((\mathcal{M}, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(\mathcal{M}\).
Let \((\mathcal{M}, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(\mathcal{M}\).

- If \((\mathcal{M}, U)\) is nonvaluational, it does not have definable Skolem functions.

- If \((\mathcal{M}, U)\) is valuational, \((\mathcal{M}, U)\) has a convex definable subgroup, thus cannot have Skolem functions and elimination of imaginaries. Therefore if \((\mathcal{M}, U)\) has Skolem functions and elimination of imaginaries, \(U\) must be an interval, and thus \((\mathcal{M}, U)\) is o-minimal.

- If \((\mathcal{M}, U)\) is \(T\)-convex, then \((\mathcal{M}, U)\) has Skolem functions, but still has a definable proper subgroup, thus \((\mathcal{M}, U)\) does not eliminate imaginaries.
Corollaries

Let \((M, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(M\).

- If \((M, U)\) is nonvaluational, it does not have definable Skolem functions.
- If \((M, U)\) is valuational, \((M, U)\) has a convex definable subgroup

Therefore if \((M, U)\) has Skolem functions and elimination of imaginaries, \(U\) must be an interval, and thus \((M, U)\) is o-minimal.

If \((M, U)\) is \(T\)-convex, then \((M, U)\) has Skolem functions, but still has a definable proper subgroup, thus \((M, U)\) does not eliminate imaginaries.
Corollaries

Let $(\mathcal{M}, +, <, \ldots)$ be o-minimal and U a convex subset of \mathcal{M}.

- If (\mathcal{M}, U) is nonvaluational, it does not have definable Skolem functions.
- If (\mathcal{M}, U) is valuational, (\mathcal{M}, U) has a convex definable subgroup, thus cannot have Skolem functions and elimination of imaginaries.
Corollaries

- Let \((\mathcal{M}, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(\mathcal{M}\).
 - If \((\mathcal{M}, U)\) is nonvaluational, it does not have definable Skolem functions.
 - If \((\mathcal{M}, U)\) is valuational, \((\mathcal{M}, U)\) has a convex definable subgroup, thus cannot have Skolem functions and elimination of imaginaries.
 - Therefore if \((\mathcal{M}, U)\) has Skolem functions and elimination of imaginaries, \(U\) must be an interval, and thus \((\mathcal{M}, U)\) is o-minimal.

\(T\)-convexity
Let \((\mathcal{M}, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(\mathcal{M}\).

- If \((\mathcal{M}, U)\) is nonvaluational, it does not have definable Skolem functions.
- If \((\mathcal{M}, U)\) is valuational, \((\mathcal{M}, U)\) has a convex definable subgroup, thus cannot have Skolem functions and elimination of imaginaries.
- Therefore if \((\mathcal{M}, U)\) has Skolem functions and elimination of imaginaries, \(U\) must be an interval, and thus \((\mathcal{M}, U)\) is o-minimal.

- If \((\mathcal{M}, U)\) is \(T\)-convex, then \((\mathcal{M}, U)_c\) has Skolem functions, but still has a definable proper subgroup.
Corollaries

Let \((\mathcal{M}, +, <, \ldots)\) be o-minimal and \(U\) a convex subset of \(\mathcal{M}\).

- If \((\mathcal{M}, U)\) is nonvaluational, it does not have definable Skolem functions.
- If \((\mathcal{M}, U)\) is valuational, \((\mathcal{M}, U)\) has a convex definable subgroup, thus cannot have Skolem functions and elimination of imaginaries.
- Therefore if \((\mathcal{M}, U)\) has Skolem functions and elimination of imaginaries, \(U\) must be an interval, and thus \((\mathcal{M}, U)\) is o-minimal.

- If \((\mathcal{M}, U)\) is \(T\)-convex, then \((\mathcal{M}, U)_c\) has Skolem functions, but still has a definable proper subgroup, thus \((\mathcal{M}, U)\) does not eliminate imaginaries.
Generalizing the results

- Apply the van den Dries test to give perhaps more generality.
Generalizing the results

- Apply the van den Dries test to give perhaps more generality.
- Iron out the details of T-convex iff valuational.
Generalizing the results

- Apply the van den Dries test to give perhaps more generality.
- Iron out the details of T-convex iff valuational.
- Examine models with more structure to them, namely $RCVF$.

Apply the van den Dries test to give perhaps more generality.

Iron out the details of T-convex iff valuational.

Examine models with more structure to them, namely $RCVF$.

We have an explicit calculation of Skolem functions for ‘T-immune’ theories (strictly stronger than T-convex).
Generalizing the results

- Apply the van den Dries test to give perhaps more generality.
- Iron out the details of T-convex iff valuational.
- Examine models with more structure to them, namely $RCVF$.
- We have an explicit calculation of Skolem functions for ‘T-immune’ theories (strictly stronger than T-convex). Expand this argument to find a direct calculation for a general T-convex theory.
Preprint ‘available’ at schris.com